R : - o o
FN - - - ~ - - - -
LT R N . - o ~ - e ot) .
* : . - ; c. N - - .
X ' - - - =< P N : b
. ., : . o7 - b ' - . - NG

TP P R X522 73-135 -
So T R V ?z?ﬁ*ziif:"’

R RS ; éﬂﬁ‘f
- A NEW APPROACH TO TELEMETRY
DATA PROCESSING e T

N - - "
- T - / ~ - - - .
- v PN ” - Pl

. o .
) - - ,) ¢ , , B
- R S .)Q’ - g — N RN

K I . . S - . - - - e

- P . R b= < N
R N i (NASA-TM-X-66248) A NEW APPROACH TO N73-24183) -
-7 .~} . . TELEMETRY DATA PROCESSING Ph.D. Thesis

v - .} - = Maryland Oniv. (NASA) 170 p HC $10.50 ,
S j CSCL Q9F Unclas

4

13
o o . o . 63,07 ou314 . J

'_;A‘R,_I.(S :J.,l_s‘RoG[er'ifj T

e o 3 \
N - . ~
' < - - - -
S - ‘ - > AN -~
— »/ - PS> —
~ - 2 . T ¢ = K -
- e - ~ P
- 14 - K / N,
D ~ - "F: - -
. .) W, — P -
2 — - <
- & i -
- N —~ s ~ .
- R .
- -~ AN / ¢ . _ o \3 N .
e - N >
~ N
- Al
. s ~ - -
< ¢ < > .
- s ~ Ea - -
. -
- . _
= N I ~—
& -~ a
" ~
v - —
. . . — .
s T g ~—
- = E e .
~ - e ~ - \ -
> N 3 .) ' i
: ,‘ .
. - <
‘ =
~ i . < . . . LR . .
’ T~ / . s - . T L
[- e -~ }
h -~ - N . - ~
- Ps s . 2y

) GREENBEI.T MARYLAND

- /. ~ ~
-~ - - - W e - X
- ! = - -
AN - - - ~.
=~ - < - _ N -
. s - ! - ‘. ~7
e p ~ - >
’ N] - ~ . , TN
b - -
- - ! - - S N -
N e - -
/ ~ -
- 3 .
- s

A NEW APPROACH TO TELEMETRY DATA PROCESSING

, by
Carlo Joseph Broglio

Dissertatioh submitted to the Faculty of the Graduuate School
of the University of Maryland in partial fulfillment
of the requirements fot the degreou of
Doctor of Philosophy
- 1973

ACKNOWLEDGEMENT

The author acknowledges a special debt of gratitude to his advisor, Dr.
James Pugsley, for his numerous helpful suggestions and especially for his

patience in the critical review of this thesis.

JLRECEDING PAGE BLANK NOT FILMED

ii

ABSTRACT

Title of Thesist A New Approach to Telemetry Data Processing
Carlo Joseph Broglio, Doctor of Philogophy, 1973
‘Thesis ditected by: Dr. Jumes Pugsley, Associate Professor

A hew approach for 8 preprocessing system for telemetry data processing
has been developed. The philosophy of this approdach 18 the developiient of &
preprocessing system to interface with the main processor and relieve it of the
burden of stripping information from a telemetry data stream. To accomplish
this task, 4 telemetry preprocessing language has been developed. This higher
~ level language contains statements desigtied using the jargon of telemetry data

engineers and a set of simple but powerful operators for manipulating telemetry
data. Also, a hardware device for implementing the operation of this lauguage
was desigted using a cellular logic module concept.

In the development of the hardware device and the cellulat logic module, a
distributed form of control has been implemented. This is accomplished by a
technique of one-to-ohe intermodule commtunications and a set of privileged
communication operations. By ¢reating i special state (called the control state),
each module canh direct the activities of the system. By transferring this control
state from module to mbdule, the control furiction is dispersed through the syg«
tem.

A compiler for translating the preprocessing language statements into an
operations table for the hardware device was also developed. This compller uses
4 simple left to right single pass compilation algorithm. It can do so bectuse the

Alangunge ig simple and has no operator precedence.
Finally, to complete the system design and verify it, a simulator for the

collular logic module was written using the AP_L/360 systom. Thig simulator

ol

contains data sets which are images of the programs that are loaded into the
various modules of the system. It then emulates the operations of the-m.odules
and produces timing data. The simulator was used to prove that the concepts
and microcode loaded into the modules worked. The timing data gathered by it
wés used to form comparisons with a medium speed machine of the operations of
a preprocessing program on the modular device with those on the medium speed
machine. TheAx"esults of this c'omparison show that the device compares very
well, being a fraction of two fo six slower on arithmetic operations, but two or-

ders of magnitude better on the bit manipulation operations.

W

2-10
2-11
2-12
2-13
3-1

LIST OF TABLES

SET-UP SEGMENT RESERVE WORD LIST o e e o e

CONTROL INSTRUCTION GROUP e o e s s e s s
" DATA HANDLING INSTRUCTIONS B

OAO-A2 DIRECT DIGITAL FRAME FORMAT

DIRECT DIGITAL DATA ELEMENTS ¢ ¢ o o .
DIRECT DIGITAL DATA PROCESSING PROGRAM . .

OUTPUT DATA FORMAT =~ . . ¢ ¢ ¢ o o o« o = o o

INPUT STRING PRECEDENCE . + + & ¢ o o o « &
PARSERDECISION TABLE . + + « v o o o v o« o &
FORMAT OUTPUT TABLE . o « + v o o« o v o .
ENCODED MODULATION CODE VALUES
ENCODED TAPE PLAYBACK SPEEDS e e e
OPERATIONS TABLE & « & v v v 4 o v v v o o &
PROGRAM MEMORY LAYOUT . . « v v v v v v « &
PROGRAM MEMORY WORD STRUCTURE
ALU MODULE FUNCTIONS . & v v v v v v v o o

ADDER ALGORITHM
SUBTRACTOR ALGORITHM ¢ ¢ + « & » &
MULTIPLY ALGORITHM e e e e e e e e e

SIMULATION RESULTS FOR THE ALU FUNCTION
SPECIAL FUNCTIONS SIMULATION RESULTS .

INSTRUCTION SET . . ¢ ¢« ¢« ¢ ¢ ¢ o ¢ o o o o o

Page

14
16
18
22
22
23
24
26
26

28

28

- 28
- 29
38

41
46
48

51

- 74

78
110

Figure

A-10
A-11
A-12A
A-12B
A-13
| A-14
A-15
A-16

A-17

1.1ST OF ILLUSTRATIONS

PROPOSED TELEMETRY DATA ACQUISITION SYSTEM
PREPROCESSOR BLOCK DIAGRAM e e e e s 4 e s
PROGRAM MEMORY BLOCK DIAGRAM
DIVIDE ALGORITHM e o s e e 4 e 6 e 4 e e b e

INFORMATION FLOW DIAGRAM OF A FUNCTIONAL

MEMORY MODULE L

CLASSIC GATING STRUCTURE . .'¢ ¢ ¢ ¢ o o o o &
MODIFIED GATING STRUCTURE G e e e e e e e

CONCEPTUAL FUNCTIONAL MEMORY CELL C e

CELL INTERCONNECTION e e 0 e s o 0 s 4 s s o s

TYPICAL MASK AND DATA CELL INTERCONNECTION
PROGRAMMED FUNCTIONAL MEMORY UNIT o« o
FUNCTIONAL MEMORY MODULE BLOCK DIAGRAM . .
FUNCTIONAL MEMORY CELL ¢ ¢ ¢« v &+ « ¢ &« o o
INHIBIT REGISTER S T N
SEARCH CONTROL AND SELECTOR REGISTER CELL

MASK AND DATA CELL e b e e e e e e e e e
INPUT GATING T

OUTPUT GATING L] ° ° ° L] . ° L] ° .

PROGRAM REGISTER (4 Shects) S h e e e e e e
ADDRESS REGISTER o e e 4 e e e e e .
COMMUNICATIONS CONTROLS e 4 e s e 5 0 e 0 e

1/O DECODER CONTROLS .+ ¢ ¢ « e ¢ o o o o & &

CLEAR AND INTERNAL MODE CONTROLS o v e e

vi

Page

37
42
33

68
86
87
88
89
90
92
93
95
97
98
101
103
104
106
116
118
122

124

CHAPTER]
INTRODUCTION

The action of telemetering data from spacecraft sensors to ground based
processing equipment introduces a number of unique data manipulation problems.
The basic cause of these problems is the need to combat noise in the space-to-
earth communications channe_lv Another cause of these problems is the use of
spacecraft tape recorders. Since typically a tape cannot be changed while in
flight, a method of recording in one direction and reading in the reverse direc-
tion is used. This, however, also causes the data to be transmitted backwards
.compared to non-recorded data.

The data under consideration in this t.hesis is strictly digital data. By this
is meant, a sensor measurement value is coded into a set of ones and zeroes
called binary digits. These binary digits (bits) are then telemetered to a ground
based receiving station where they are recorded on an anaiog tape. This analog
tape is transported to a processing facility. However, during the telemetering
process the binary bits were encoded into one of several position-time sequences.
These sequences are designed to combat a particular kind of noise which may be
knO\;vn or suspected to be present (reference 1). During the telemetering and
rgcording process, the 'timing information necessary to reconstruct the sets of
data bits has been lost. Hence, to reconstruct this information, special purpose
equipment is required and various special techniques are used (reference 2).

First, the data bits must be reconstructed as accurately as possible. For
this purpose a device known as a bit synchronizer is used. This device produces
a "best estimate' of what the original bits were. It typically employs 2 maximum
likclihood decision model., At this point in the processing, a strcam of dat‘a hits

is present. This data stream contains errors and must be regrouped into the

. ‘.

original sets of data values transmitted. These valucs are now called data words,
each word being a known number of bits in length. But during the bit synchroni-
zation process, the starting bit position of.the first word is lost and, thus, it is
unknown where any data word begins or ends. Thus the technique of creating a
special grouping of data bits into sets called data frames is used. These sets
contain (usually as a prefix) a special known bit pattern called a frame synchro-
nization pattern (FSP). A special device known as av frarhe synchrohizér is used
to "search' the data stream for this pattern. This is done typically by placing
the desired FSP in a data régister and shifting the data stream through another
data register. A comparator is placed between the two registers and contains a
preselected error tolerance. When a bit by bit match is obtained between the two
registers that falls within the error toleranée, the pattern is considered found. At
this point it is possible to separate the data bits into the specified data words and
the telemetered data is considered to be recovered. Typically, the data is then
transferred to a general purpose computer and the data processing phase begins.

At this point in the operation, several observations should be made. No
spacecraft currently being'ﬂown contains only one sensof. In fact some contain
hundreds of sensors. In the data frame scheme described, not all sensor outputs ‘
need to be in a single data frame because, such a scheme implies a fixed sam-
pling rate. Furthermore, a standard governing the size (in bits) of data words
ana data frame (reference 3) exists. Hence, not all sensors can he placed in one
data frame and, quite often,. sensor values cannot be placed in single data words
nor even in consecutive data words. Thus, some sensor data values may be dis-
tributed in words througﬂout the data frame. Other words of the data frame may
contain a sequence of sensor values on consecutive data frames (a process
called subcommutation). When subcommutation is used, a method for detcfmin-

ing the start of the sequence must be present. Usually a data word is used for

this purpose. For example, a word may contain a binary counter which repre-
sents the sequence number of this data frame and identifies what sensor values
are present.

In addition, many spacecraft use a method of parity generation to insure
error detection capabilities. When this is present, the parity for the recelved
data must be computed and compared with the received parity to determine if an
error has oécurred., As a further assurance of how well the system is operating,
the bits contained in the FSP are compared with those expected and a count of the
errors is maintained. This error count is used as a measure of the error level
of the bit stream. Finally, to .assist the bit synchronization process in cases
‘where it is suspected that data values may not 6hange for many bit times, certain
bits of the data stream are complemenﬁeda

All of these observations noted here require a set of data processing func-
tions to be implemented. These functions are needed to transform the data
frames into data values that the computer can work with. However, these func~
tions do not contribute directly to the data processing operation. Further, these
functions are awkwardly handled in a large general purpose processor since most
of these machines are designed for data computation and have limited bit manip- .
ulation capabilities. The problem is further compounded by the faci: that most
higher level programming languages are also designed to do computations and
many are very inefficient at bit manipulation. Efficiency becomes important for
two major factors. First, spacecraft generate a large volume of data; greatly
reducing total run times can be accomplished by saving instructions in highly
repetitive operations, Second, a need often exists to handle the data as it is re-
ceived in real time and hence not much processing time is available. A final ob-
servation is that the data is transferred into the computer over one of its input-

output channels. This means that the data words are stored consecutively in the

computer's internal datn words. The size of these two different words is rirely
identical and thus represents an unhaturul tita get to the computer becetiuse, data
words are r‘lnot on computer word boundaries.

Under the current method of telemetry data processing, these problems
are handled by programs coded at the machine language level. Hence, if more
than one type of computer is involved at the frame level of processing, as is
- typical, a costly duplication of programming effort is require:d. Further, any
event which causes a change in the data format (e.g., 4 failure on the spacecraft
while in.orbit or, 4 desigh change in a fami.lyk of spacecraft) requires extensive
reprogramming to accommodate. Several aftempts have been made in the past
to generalize some of these functions (referénces 4, 5, and 6). These ap-
proaches, however, were either too specialized to a ISpecific machine config-
uration or too cumbersome and complex to be used effectively.

The work of this thesis is directed toward the solution of these problems
while overcoming the difficulties of the past approaches. In the context of this
solution, it is assumed that a special-purpose device will be placed between the
frame synchronizer and the host computer's input-output channel. This device
will have the ability to pass the necessary parameters to the frame synchronizer
subsystem to enable it to run. The device will then accept data from the frame
synchronizer, and reformat this data into sensor values which will appear on the
host computer's word boundaries. Finally, the functions of parity checking,
word reversal, bit complemefxting, data counter continuity checking and FSP
error mcasurements will also be done in this device, thercby allowing the host
computer to concentrate on data processing.

To overcome the difficulties and costs cncountercd in programming the

required bit mahipulation functions, a spccial-purpose higher level telemetry

preprocessing language has becen designed. This language concentrates on bit

manipulation methods and has only. a minimal set of computation instrﬁct_ions.
The statements of this language are derived from telemetry data handling engi-
neer's jargon and hence, programs in this language represent a concise descrip-
tion of the telemetry data frame. Perhaps the biggest advantage of this language
is the ease with which the programmer can accommodate changes in the data
format's structure.

Since the device which implements the language must be able to interface
with a wide variety of host computers on one end and a number of different frame
synchronizers on the other end, a microprogrammed (reference 7) approach was
taken. Another factor inﬂuenciﬁg this decision was the wide variety of internal
computer formats which must be accounted for, since this device must appear
to be a standard device to the host machine. By appearing as a standard device,
the host machine's operating system can be used with minor changes and hence
the system integfation costs are minimized,

Having decided to us< a microprogrammed approach, the ocperations speci-
fied in the preprocessing language were examined to determine what microcoded
functions were required. It was observed that; a) telemetry words vary in size
from 6 to 32 hits, 1 b) bit for bit word reversal is a nontrivial function, and
c) selective bit complementation is a special operation compared to all the other
functions required to iiﬁplement the preprocessor. Upon examining "off the
shelf" microcoded machinery, these operations are not part of the standard
functions offered. Further, many of the word sizes required are not compatible

with the machines' internal data structures; hence, using one of these machines

1. The Standards (reference 3) claim larger word sizes, but in practice they
are ncver usced. In fact, the hardware currently in use will accommodate a
maximum word size of 32 bits. '

would represent 4 transferal of the problem from the conventional general pur-
pose machine to the microcoded one and, many of the past difficulties would
stili be present. Thus the operations of the preprocessing system were exam-
ined to find the most uniform approach to the total system design. To accom-
plish this task, a design of an integrated circuit chip, implementing a concept
known as a functional memory (reference 8), wds completed. This module de-
sign offers the power of implementing all the required logical functions with a
single chip structure. The ititerconnection between these chips is accomplished
with another chip structure thereby yielding a system with only two basic parts.

The functional memory module is discussed in detail in Appendix A. The
term functional memory denhotes a device used to generate Boolean functionals in
a memory device. Basically, itisa methc;d of a_r;vrv'anging a cellular memory ar-
ray such that, each cell of thg array can be eithet an associative memory cell or
a conventional memory cell. Additional gating is provided at the array bound-
aries so that Boolean functions can be generated by using the above two memory
types in combination. The associative nature of the memory is used to "'search"
for a set of preprogrammed Boolean expressions in the input data. Then the re-
sults of this search are used as a conventional address to 'read' the function
outpﬁt from specified cells of the array.

In order to implement a system of this type the concept of distributed con-
trol was used. This concept treats each module as an independent processing
station and represents a means of networking these stations.

The concept of distributed control was hinted at in an article by L. J.
Koczela (reference 9). This is basically the replacement of the conventional
single control unit by a transferable abstraction of the control function. This
implies that cach functional memory array of the system contains a flip-flop in-

dicating whether or not it hag system control, If it has system control, then it

is allowed to carry out certain privileged global operations. These operations
primarily deal with the intermodule data communication system. Only a module
in control is allowed to transfer data over the communication bus to other mod-
ules and initiate cycles within those modules. Further, control can be both trans=
ferred and retained by the issuing module, thus allowing independent control se-

. quences to be simultanecusly initiated. By the use of this concept, the data flow
paths through the various fun_cﬁonal elements are directed with the net result
being that the data flow path through the system determines the total processing
function to be performed.

A conventional control approach with one or more modules making up the
-.control function could have been implemented, but this approach would represent
a more complex design. With. distributed control, no subsystem needs to know
what functions are being executed at all parts of the machine. It merely needs to |
know what the data destination is and where to pass contrel. This simplifies the
design by necessitating fewer system wide control lines and allowing independent
functions to complete their tasks at the rate which the tasks require.

In summary, this system offers two advantages capable of overcoming the
difficulties of past approaches. These advantages are a higher level telemetry
prebrocessing language and a peripherai device to implement that language in
microcode., The languége oﬁers' to the user the capability of specifying in nearly
English terms, the transformations that ne desires to perform on the telemetry
data stream. These terms were derived from the jargon used by the handlers of
telemetered data and hence, should be readily understood by Wori{ers in this
area,

The microprogrammed peripheral device has the advantage of scparating
the operations to be performed from the main computer. This helps the problem

solution in two ways. First, it simplifies the processing program in the main

computer by preparing a data set for it and hence, ?elievin‘g this processor of
many bookkeeping and manipulation functions which do not contrihite to the proc-
essing operation directly. Further, many of these functions are not implemented
in the standard instruction set and thus are inefficient to implement. Secondly,
by being a microcoded device; it is adaptable to most commercially available
computers since the microcode can be changed to suit the host comptiter and thus
the device becomes installation independent.

The remainder of this thesis will describe the above problem solution in
detail and develop in depth the concepts and techniques used. Chapter II presents
the telemetry preprocessing language. The elements of this language are defined
and explained by use of examples. A comnipiler for this language which was writ«
ten in APL (references 10 and 11) is also described in this cﬁapter‘

Chapter IiI discusses the design atd microcode sequences of the peripheral
device developed to implement this language. Chapter IV describes 44 APL simu-
lation of the system and presents a discussion of it. Chapter V presents the re=
sults, conclusions, and recommendations of this work. Appéhdix A is a detailed
presentation of the functional memory module chip design. Appendix B is & meta- _
language description of the telemetry processing language. Appendix C is a de-
scription and listing of the APL compiler. Finally, Appendix D is 4 description

and listing of the APL simulation programs.

CHAPTER 11

THE TELEMETRY PREPROCESSING LANGUAGE

A, The Problem Environment

In Chapter I, the various parts of a telemetry data acquisition system were

introduced and the interfaces to this research were discussed. These concepts

are shown again here in Figure 2-1. In this figure, the telemetry data is input

to the system on what is called an analog tape.

The name '"'analog' is somewhat

misleading because the recorded signals are digital pulses (i.e., on-off type).

It is called analog because the timing information needed to recover the data is

not recorded on the tape and the techniques used to recover that information are

analog in nature (e.g., a phase-locked loop).

|
i

_____ N

|

ANALOG TELEMETRY
ANALOG BIT FRAME DIGITAL
—® TAPE [— —®1 PREPROCESSING
S bd
TAPE DECK YNC SYNC SYSTEM COMPUTER

———3 DATA t

— — —p CONTROL

_ Figure 2-1. PROPOSED TELEMETRY DATA ACQUISITION SYSTEM

As is shown in Figure 2-1, the proposed telemetry preprocessing system

has two functions. First, its main task is to reformat the frame synchronized

data into sensor values capable of being processed directly by the digital com=-

puter. Second, it is designed to distribute the necessary control parameters to

the acquisition system to allow it to operate. While this capability is designed

into the system, it is not necessary for its operation. Hence, the preprocessing

system can operate in cases where other forms of control are desirable or in

cases where other configurations are necessary (e.g., a digital tape could input

dircctly to the telemetry preprocessing system in the figure).

9

10

Upon closcr examination of the system of Figure 2-1, the parameters hec-
essary for this systems operation atre ensily determined. The analog tupe deck
needs to know what speed is required to run the analog tape sitice these units are
typically designed to run at several speeds. The bit synchronizers are designed ,
to run over a broad range of data rates (called bit rates) and also can handle
several forms of modulation codes (called code types). Hence the desired bit
rate and code type are necessary parameters. Finally, the frame sysnchronizers
are typically generalized to handle all the standard types of formats (reference
13). The necessary parameters required to define these formats are the number
of bits in a telemetry data word, the number of telemetry data words in a telem-~

_etry data frame, and the frame synchronization pattern.

The last three parameters (bits/Word, words/frame and FSP) form part of
the input constraints to the telemetry preprocessing system and are used by that
system to locate data values and to perform some of the error measurement
cdmputations briefly discussed in Chapter I. These computations will be de-
scribed in greater detail later.

The other input constraints were also briefly mentioned in Chapter I and
consist primarily of data formatting and translation problems. The data format-
ting problems are: 1) reversed data where the least significant bit of the data |
value is transmitted last; this requires a bit for bit reversal of the data value;

2) dispersed data where parts of the data value are found in different telemetry
data words; this requires a bit-by-bit assembly of the data value from several
telemetry data words; and 3) complemented data bits; this requires selected bit
complementation. |

The data translation constraints consist primarily of error checkirg com-
putations. Data parity checks can be generated by either the spacecraft telem-

ctering system or by the experiment measuring system of the spacceraft, These

°

checks can be either even or odd parity. If the telemetering system imposes the
parity, then the parity check must be done on the bits in the order which vthey
were transmitted. If the experiment system imposes the parity, then the parity
check must i)e done on the bits afier the data value has been assembled.

Counters appearing in the data should be checked for the continuity of the
count, These counters may be either forward counting or backward counting.
The telemetry preprocessing system should be capable of establishing the cor-
rect count value, flagging counts that are received in error, and keeping a rec-
ord of the number of counts that are received in error.

Finally, since the frame synchronization pattern is the primary measure
of the received error rate and is used for data quality assurance pu.rposes, the
telemetry preprocessing system should be éapa'ble of performing all the neces~
sary error computations on this pattern. These statistics are collected on a
frame~by-frame basis, as well as in an overall cumulative form. The statis-
tics to be collected are: 1) a bit-by-bit error distribution, 2) a one-to-zero
error distribution, and 3) the total number of errors.

In addition to the input constraints on the preprocessing system, the host
digital computer which receives the data imposes oufput constraints. Since tﬁe
main purpose of the preprocessor system is to free the host computer from thosé
functions that are not directly related tc the processing of sensor data, care must
be taken to avoid additional nonfi-elated processing tasks which would be required
to accommodate the output of the preprocessor. Thus the preprocessor output
must be compatible with the host computer's internal data format. If the pre-
processor were to appear to the host computer as a standard peripheral device,
the programming impact on its operating system to accommodate the preproces-
sor could be minimized. TFurther, the data storage scheme used by the teleme-
try preprocessing language should be compatible with the data retrieval scheme

i

12

uscd by the host computer's data processing progiram; i.c., an operation simi-
lar to a2 COMMON statement for FORTRAN progiams should be implenseited.
While many of these functions are hardware related and are handled by the pre-
processor hardware design (described in the next Chapter), the data storage al-
locations and contents are described in the telemetry preprocessing language.

Finally, as in any language, certain instructions are provided for pro-
gramming convenience. These are combu‘ted branch instructions provided to
alter the execution sequence of instructions, conditional branch instructions pro-
vided to alter the execution sequence dependent upon conditions in the data, and
looping instructions provided to allow repetitive operations to be concisely
.stated.

All of the above constraints and conditions described in this introduction
form the context within which the telemetry preprocessing language is intended
to operate. To facilitate the coding of statements in this language a compiler
was designed and coded in the APL language (references 10 and 11), For sim-
plicity, this compiler assumes that the language statements are to be input onh 80
column cards. Hence, general field delimiters are not used; instead, column
positions and blank columns are used to delimit statement fields. The language
is context dependent; hence, not all statements have the same number of fields.
H‘owever, all cases are unique; thus no ambiguities can arise. The output of this
compiler is an operations table which is a coded set of the operational steps that
are required to implement thé statement of the language. This table will be de-
scribed later in this chapter.

The compiler containg an extensive set of error meésagcs to assist the
programmer in detecting and correcting syntax errors. It also allows the pro-
grammer to use symbolic addressing and symbolic address computation. 'chce,

by the use of descriptive names for the sensor value addresses, it is possible to

have the telemetry preprocessing language program appear to a knowledgeable
reader as a shorthand English description of the telemetry data frame. |

B. The Language

This section describes the syntax of the telemetry preprocessing language
along with those compiler functions necessary to implement that syntax. The
elements of the telemetry language consist of all the capital letters, the digits

' zero to nine, and the special characters: + - = () / , . = and blank,
These elements are then grouped to form variables which are used to either index
data values, to form data destination addresses, or to specify the operations to
be performed on the telemetry data. The telemetry language is logically divided
into two segments: the set-up descriptors and the frame descriptoré.

The set-up descriptors form a table which contains the parameters required
to configure the frame synchror;ization data aéquisition system discussed in the
introduction. This segment of the language contains statements. Such state-
ments, being the specifications of operations to be performed, consist of three
fields: a location field, an instruction field, and a parameter field. The names
given to these statements derive from the content of their instruction fields. The
segment begins with a FORMAT statement and ends with an END statement. The
location field contains the identifier of the telemetry data frame being described.
The location fields of all other statements in this segment are ignored. The loca~
tion field is considered to be nine elements long and is blank-filled to that size
with the information being left~justified.)

The identifier field is 10 elements long and begins in cc_)lumn 10 of the input
card. Tablé 2-1 contains a list of the parameters identified in this segment.

FSP denotes the right-justified frame synchronization pattern. The pat-
tern which appears in the parameter field of the statement may be an octal number

which is prefixed by the letter "o", a binary number which is surrounded by

/3

14

parcntheses, or a combination of the two. In any case, the binary cquivalent of
this parameter must represecht the exact pattern right-justified. In this manner
the compiler can determine the number of bits 'toluse in setting the preprocessing
system for the required error calculations and also what pattern to gend to the

frame synchronizer.

Table 2-1, SET~UP SEGMENT RESERVE WORD LIST

INSTRUCTION

FORMAT

FsP

CODE

BIT RATE
BITS/WORD
WORDS/FRAM
TAPE SPD
END

CODE specifies the telemetry modulation type to be used by the bit syn-
chronizer and is an optional parameter. The legal modulation types are: SPPH,
BIPH, RZ, NRZ, NRZM, NRZL, and NRZC. These codes are described in the
stahdards (reference 3).

BIT RATE is the telemetry transfer rate at which the bit synchronizer is to .
run, and is an optional parameter. The value in the parameter field may be a |
decimal, octal, or binary number.

BITS/WORD specifies the number of bits in a telemetered data word. This
parameter is requlred since the preprocessing system uses it to determine how
to store the telemetry data il; its internal structure. . > -'

WORDS/ FRAM Spemfies the number of telemetered data words in a telem- ‘
etry frame This parameter is required so that the preprocessing system can
alio.c_ate its internal resourees.

TAPE SPD is the speed to be used in reading an analeg tape and is an op-
tional parameter. The legal speeds are: 120, 60, 30, 15, 7-1/2, 3-3/4, and

1-7/8 inches per second.

15

.

All of the necessary parameters must be present when specifying the set-
up description segment; otherwise, an improper format syntax error is encount-
ered.

The frame description segment contains the instructions which form the
main working portion of the language. These instructions form three functional
groups: a control group, a storage allocation group, and a data handling group.
| This segment begins with a FRAME statement and ends with an END statement.
The location field of the FRAME statemeﬁt identifies what data frame is being
described. The name located here must match the name in the logation field of
the FORMAT statement defining the set-up table for this telemetry data frame.

All the statements of this segment except the END statement contain a nine -
element location field which may be blank, Further, with the exception of the
FRAME statement,' these location field variables may be subscripted. When
subscripting is used, the assigned location of the variable is used as a base ad-
dress to which the computed value of the subscript is added to yield a final stor-
age address. |

The storage allocation group of instructions contains three fields: a loca-
tion field, a type field, and a parameter field. Since it is being assumed that
there are two independent types of storage in the preprocessing system (a pro-
gram store and a data store), and that the contents of these storages may not be
xﬁixed between program and datd, two types of storage allocation instructions are
required.

The storage allocation instruction that specifies addresses in the program
memory is the CONTINUE statement. The location ficld of this statement con-
tains a symbolic name of an address in the program memory. When this name
is referred to by other statements in the language, its value will be the address

of the statement following the CONTINUE statement in the program,

16

The storage allocation instruction that anddresses only the data memory is
the DIMENSION statement. This statement uses all three fields of this group.

All variable names which reference the data memory must be ditnensioned before
they are used in a statement. The parameter field 6f this statement denotes how
many consecutive data storage locations are to be assigned to fhis‘ name.

The control group of instructions contains three fields: a location field, an
instruction field, and a parameter field. This group of instructions deals primar-
ily with bookkeeping, decision making, and order of execution types of operations.
These instructions are used to compute and assign valdes to index registers to
perform both conditional and unconditional branching operations, and to form
-ﬁrogram loops. Igglusion 6'1‘ these types of operations enables programs to be
written in compact' form and also allows conditions within the data to alter the

program execttion sequence. Table 2-2 lists the instructions inciuded in this

group.
Table 2_-2. CONTROL INSTRUCTION GROUP
LOCATION _ INSTRUCTION PARAMETER
{Name) = (arithmetic expression)
GOTO {location)
REPEAT F, V=1, E
IF ({logical expression)) TRUE
N EQUATE 0

The first expreséion in the table is an index definition statement as delim-
ited by the presence of the equal sign. The name to the left of the equal sign is
the symbolic name of the index being defined. The arithmetic expression on the
right may have any number of levels of parentheses, and any legal (to be defined
when the compiler is discussed) combination of adds, subtracts, multiplies,
and divides. The variables appearing on thé right may be decimal numbers or the

symbolic names of previously dcfined variables. This statement may have a

17

location symbol; if it does, thé value of the index as computed from the arith-
metic expression will be placed in the data memory location specified by the lo-
cation field. \.

The GO TO, REPEAT, and IF instructions must have null location ficlds.
The names in the GO TO and IF instructions must appear as a location expression
of a CONTINUE statement. The GO TO instruction is an unconditioned branch to
' the specified location. The IF instruction is a conditi'onal branch instruction. If
the logical e;;pression (to be defined) is true, then, the branch to the specified
location is executed; otherwise, execution continues with the next instruction.

The REPEAT instruction is used to perform a looping operation. The loop
index (V) is specified by name. The initial value of the index is the 'value of the
first simple arithmetic expresgion (I). The final value which will cause the loop
to be exited is the value of the second simplevarithmetic expression (E). The
REPEAT instruction is used to repeat the next F instruction in the program. The
way in which the loop operates is as follows: the loop index is incremented by
one and compared to the final loop value for the equality condition every time the
end of the loop is reached. When equality occurs, the loop is exited at the next
instruction beyond the end of the loop. |

Two important restrictions must be remembered. First, if the variable is |
not a decimal number,_ it must be the name of a previously defined index. Second,
the loop index may be altered within the loop, but care must be taken to insure that
equality will result at the end of loop test.

The EQUATE statement must have a name in the location field. This name
must matcﬁ. the name of a frame identifier. This statement is used to define a
frame which is simply the reverse of another defined frame; a condition common-

ly prevalent when spacecraft recorders are used.

18

The index defir_nitio‘n instruction may have a l.bcation’ symbol; {f it does,
the value of the index as comptted by the definition of that index will be placed
in the specified data memory location.

A note on the card formats for these instructions, the GO TO and REPEAT
instructions have arguments which must begin in column 20. All others begin in
column 10 and continue until a blank is encountered.

Logical expressions are formed by a set of arithmetic expressions whose
values are either zero or one, and variables whose values are either zero or one
connected by the logical relators: EQUAL, NOT EQUAL, LESS THAN, LESS THAN
OR EQUAL TO, GREATER THAN, GREATER THAN OR EQUAL TO, AND, OR,
and NOT. One impbrtant fule of operation must be remembered: the order of eval-
tation is left to right with no precedence émong the operators. However, note that
in both arithmetic and logical expressions, any levél of parenthesis i{s allowed and |
here the evaluation sequence may be alter;ed. Also, in logical operations, the una=
ry operator NOT means complement the operand to its right. If that operand is a
variable, the value of that variable will be.éomplemented prior to comparison.

The data handling instructions form the main working section of the lan-
guage. They are used to extract sensor data vdlues from the telemetry data
words and to perform all of tﬁe data manipulation functions that are required.
These instructions confain two fields: a location field and an operation field'..

The location field contains a poinfer to the data memory address where the as-
sembled data value is to be stored. The instructiogs of thig group are listed in
Table 2-3. - |

Table 2-3. DATA HANDLING INSTRUCTIONS

LOCATION INSTRUCTION

SYNC, M (A, B, C)

{location name), M (A, B, C)
WORD, M (A, B, C)

SUB, M, K, O (A, B, C)

19

In this table, M is a modifier opération which may be Lj.(fo indicate that
the word has its least significant bit first and, an end for end bit reversai must
be done) and/or one of the following: PET, PEA, POT, POA, or blank. The
modifiers PET, PEA, POT, and ?OA specify that the associated data value is to
be checked for a parity error. The parity bit to be used for comparison is the
bit specified by the word control section of the instruction containing one of these)
" modifiers. The type of check to be performed is specified by E for even parity
or O for odd parity. The time that the check is to be performed is specified by
either T for before manipulation or A for after manipulation. The result of the
parity check is to set the sign bit of the specified data memory word to 1, if a
parify error is detected and, to 0, if not. |

The data value to be checked is specified by those instructions that are
linked to the one containing the parity check modifier. Instructions may be
linked by either plus or minus signs. The linkage symbols are fully distinguished
from their arithmetic counterparts by their location in the instruction stream.

The plus linkage implies that the bits specified by the instruction immedi-
ately following will be appended to the right of the bits already extracted. The
minus linkage implies that the complement of those bits will be appended. Iril
this manner a new data value is formed from the input bit stream.

The bits to be ménipulated in the above manner are specified by the param~
eter set (A, B, C). A is the te,lémetry word number to be processed. This
parameter can be a number, a variab‘le, or a simple two variable arithmetic
operation. B is the number of the starting bit within the telemetry word., C is
the number of bits to take from the tclemetry word. Taken together these param-
eters define a new information word derived from the original stream.

SYNC is the instruction used to indicate the location of the frame SYnc pat-

tern (FSP) in the telemetry data frame. The SYNC instruction doesn't place the

20

frame sync code in thie data memory; instead, it retrieves the frome gync tote

* from the format table word and compatres it with the data value bit by bit. 1t

then replaces this data value in the data memory by & set of words representing:
1) the total number of errors in the frame sync pattern, 2) the number of pattern
ones in error, and 3) the "exclusive ot'' of the pattern and the recéived fraine
synchronization code. In addition to this, it keeps a cumulative set of registers
containing the statistics of items 1 and 2 above,

In the location name operation, the name must be 4 defined data memniory
address. Hence the parameter set will operate bon the data memory locations
specified ‘by name, whereas in thé other data handling, the operations are per=
formed on the input data get.

The WORD instruction is used to extract sensor data vdlies from the te-
lemetry data words. | | | |

SUB is the instruction used to indicate the presence of a subcommuitation
counter and initiates the accumulating of statistics and the smoothing of this
counter; i.e., error flaggihg and a continuity check.

The SUB instruction and fhe SYNC instruction are the only two insttiictions
which involve more than one data frame in their execution. The SUB instruction
is designed to dei:ermine whether or hot the sequence of values received for a |
data counter is correct. It also gathers error statistics concerning the condi-
tion of the data counter. In orde.r to perform these functions, this instruction
must determine what the expected count value should be, This is done by scarch-
ing for three consecutive received counts. The cou'nt mode (K) of the instruction
specifics whether to look for forward (F) or backward (B) counting. TFurther,
the counter modulus (O) fn the instruction specifies the range of the data counter.

This instruction forms a value for entry into the data memory in the same

_ way ag the word instruction, but with two exceptions. While searching for three

21

consecutive count values to establish the counting sequence, the sign bit of the
stored data wbrd is sct. Then, once a scyucnce has been éstablished, 'thé cx- |
pected count value will replace any count value received in efror, with the sign
bit being set to denote the replacement of the received data. Al count sequence,
once established, may be broken by the reception of three consecutive cmhts
received in error.

This instruction maintains a set of error counters tliroughout thé process-
ing operation. These error counters are read out to the host machine upon re-
quest and represent: 1) the number of times a new sequence had to be estab-~
lished, 2) the number of count's'in the search state, 3) the‘ number of efroneous
counts received while in a sequence, 4) the total number of counts received while
in a sequence, and 5) the number of attempts made to establish a .sequence.

‘Comments in the language, when punched on an 80 column card, can be
entered either with an asterisk (*) in column 1 or after a blank at the end of a
language statement. Comments may appear anywhere within the telemetry lan-
guage. A final note on card formats is that, if the linked data handling instruc-
'tions or an index definition statement forms a character string too long to fit on
one card, an asterisk (*) in column 80 signifies that the entire next card is a con-
tinuation card. As many continuation cards as needed may be used. However,
on a continuation card an * in column 1 does not signify a comment card. In
this case, the * is interpreted as an operator.

As an example of the use of this language, consider the direct digital frame
format of the OAO-AZ spacecraft (reference 14).

As is shown in Table 2-4, the set-up table indicates that the modulation
code is NRZC. The 64 words of the telemetry frame are each 32 bits long and
and are transmitted to the ground at a rate of 50,000 bits per sccond. Notice

that in the FSP specification the "o" preceding the numhers indicates that the

22

octal number system 18 to bu used. However, the ()" neit the end indicites a
switch to the binary system. The resulting bit string is the FSP r‘ighf-—justlﬁed;
{.e., 11100010010000111011010001110110.

Table 2<4. OAO-A2 DIRECT DIGITAL FRAME FORMAT

LOCATION INSTRUCTION PARAMETER
DD FORMAT

FSP 07044166435(10)
CODE NRZC
BIT RATE 50000
BITS/WORD 82
WORDS/FRAM 84
END

Table 2-56 indicates a further breakdown of the" bit stream ihto 8-bit ele-
ments, where the first 4 elements are the FSP, tﬁe 5th element i8 the TV line
number, and the 6th to 256th are the TV intensity elements. Further, notice
that the data is least significant bit first and, in thé ease of the intensity ele-
ments, every odd number bit is complemeﬂnted. Preparing this information for
use in a general purpose computer requires a lengthy and complex program.
However, as Table 2-6 shows, the telemetry preprocessing language makes it
rather simple to describe’ the reconstruction of this data.

Table 2-5. DIRECT DIGITAL DATA ELEMENTS

BIT

ELEMENT 12345678

1 11100010

2 01000011

3 10110100

4 01110110

5 YoY1YaY3Y4YsYeYn

6-256 fghy lohgl e 1o

where: Ya¥eVsYaY5¥a¥1Y is 4 binary TV line nimbet.
n, = ix complemented, ‘
i615i413i211 iy is a binary intensity vilue,

p is the even pirity s transmitted bit,

Table 2-6. DIRECT DIGITAL DATA PROCESSING PROGRAM

LOCATION

INSTRUCTION

PARAMETER

DD
STAT
LINE
ELMT
STAT

'LINE

| ELMT(1)

ELMT(2)

ELMT(3)

ELMT(I)

ELMT(I+1)

ELMT(1+2)

ELMT(I+3)

FRAME
DIMENSION
DIMENSION
DIMENSION
SYNC (1)

WORD, L(2,1,8)

WORD, PET(2,16,1) + WORD(2,15,1) -
WORD(2,14,1) + WORD(2,13,1) -
WORD(2,12,1) + WORD(2,11,1) -
WORD(2,10,1) + WORD(2, 9,1)

WORD, PET(2,24,1) + WORD(2,23,1) -
WORD(2,22,1) + WORD(2,21,1) -
WORD(2,20,1) + WORD(2,19,1) -
WORD(2,18,1) + WORD(2,17,1)

WORD, PET(2,32,1) + WORD(2, 31,1) -
WORD(2,30,1) + WORD(2,29,1) -
WORD(2,28,1) + WORD(2,27,1) -
WORD(2,26,1) + WORD(2,25,1)

I=4
REPEAT

WORD, PET(X,8,1) +WORD(X, 7,1) -
WORD(X,6,1) + WORD(X, 5,1) -
WORD(X,4,1) + WORD(X, 3,1) -
WORD(X,2,1) + WORD(X,1,1)

WORD, PET(X,16,1) +WORD(X,15,1) -
WORD(X,14,1) + WORD(X,13,1) -
WORD(X,12,1) + WORD(X,11,1) -
WORD(X,10,1) + WORD(X,9,1) .

WORD, PET(X,24,1) +WORD(X,23,1) -

WORD(X,22,1) + WORD(X,21,1) -
WORD(X,20,1) + WORD(X,19,1) -
WORD(X,18,1) + WORD(X,17,1)

WORD, PET(X,32,1) + WORD(X,31,1) -
WORD(X, 30,1) + WORD(X,29,1) -
WORD(X,28,1) + WORD(X,27,1) -
WORD(X,26,1) + WORD(X,25,1)

I=1+4
HALT
END

251

5,X=3,64

Y 24

Notice that the SYNC instruction refers to word 1. This causes the sys-
tem to refer to the DD format' BITS/WORD statement and take the first 32 bits of
the bit stream. The system thenh compares these bits with those of the FSP state-
ment and gathers its statistics.

Notice the statement LINE., This statement causes bits 1 to 8 of telemetry
word 2 to be reversed and placed in a location (line) reserved for the TV line
number.

Next, the in‘tenslty elements are dealt with, The first word instruction
indicates that this is the even parity bit as transmitted and causes 4 parity check
on this element. The rest of the WORD instructions in the statement cause the
uncomplemented intensity element to be found in the appropridte element array
location in most sigrificant bit first integer format.

Note that the repeat loop and the index counter are used to save the pro=
grammer from the burden of specifying every element. This program would
cause an array to be formed which, when output, would have the data storage al-
locations shown in Table 2-17. |

Table 2-7. OUTPUT DATA FORMAT

WORD NUMBER CONTENT
1 Frame Sync Error pattern
2 A Number of FSP errors ih this frame
3 Number of FSP ones in error
4 - TV line number in integer form
5-266 Parity error bit and 7-bit intensity
values 1-251

The first 3 words generated result ftom the SYNC instruction. The rest
are a result of the WORD instructions.
In summary, the telemetry preprocessing langiage described and illus=

trated above is proposed us 4 more hatural means of manipulating telemetry

25

data streams. This is because the information content of these data st;r(;;u.ns is
deséribed by using the telemetry format specification to extract the data. A

further benefit is that the code generated in this manner inherently containg the
internal bookkeeping required to extract the data and, thus, is a much simpler _
code. Hence, it is easier to debug, maintain, and modify as opposed to either

~ machine language coding or FORTRAN coding.

C. The Compiler

The telemetry preprocessing language compiler is a set of subroutines
written in the APL language which converts a program input data stream into an
operations table to be described..

The APL language was chosen for its availability, interpretive implementa-.
tion, and its powerful set of operators. These features considerably shortened
the development and debug times in designing and implementing the compiler and
-allowed compiler concepts to be explored without excessive concern for internal
bookkeeping chores.

Because of the simple nature of the telemetry language, a simple left to
right single paés compilation algorithm was able to be used. This algorithm is
described in reference 17.

| The main body of the compiler is driven by a reserve word list (reference
16) consisting of the ihstruction ’set and operators. This list drives the compiler
to the appropriate subroutine, which parses the particular instruction being ex-
amined. Most of these routines are context sensitive (reference 15) since most
of the instructions have a rigid format.

The most interesting of these routines is the arithmetic and logical parser.
This routine is driven by two tables and is used to form a reverse Polish string
(reference 12) of these expressions., The first of these tables (Table 2—85 is tpe

Input String Precedence Table. This table represents an exhaustive listing of the

allowed order of elements in the input string. I an error is detected here, an
error message is generated and the entire expression is discarded.

Table 2-8. INPUT STRING PRECEDENCE

HEAD OF INPUT

SYMBOL | CLASS
SYMBOL - |relation|logical | . NOT. | arithmetic | variable | (
CLASS T 1 2 3 4 5 |e|7
last | relation 1 X X X +/- X
input logical 2 X X X X
.NOT. 3 X X X X
arith- 4 X X X X X
metic
variable 5 . X X X
(6 X X . +/=
) 7 X X

x = not allowed
+/- = plus or minus only
relation = .NE.,.EQ.,.LE.,.GE.,.LT.,.GT.
logical = ,AND., .OR.
arithmetic = +, -, *,=

Table 2-9, the Parser Decision Table, is used by this routine to assign
weight to the elements at both the top of the storage (TOS) string and the head
of the input string (HIS).

Table 2-9. PARSER DECISION TABLE

SYMBOL TOS HIS
logical/relator 2 1
.NOT. 4 3
arithmetic 6 5
variable 8 7
(0 9
) 0

Elements are ithexvl transferred to the output reverse Polish striﬁg}’:a‘ccord-
ing to the simple algorithm:

HIS >TOS means HIS moved to TOS and drop HIS,
HIS = TOS means drop both HIS and TOS,
HIS{TOS means TOS moved to output and dropped.

This relatively simple system adequately parses all of the logical and
) v.ar’ithmetic expressions found in this language.

The compiler is structured into two major divisions: the format parser
and the frame parser. Both of these divisions accept card images as input and
produce the above mentioned outputs. They scan the input character stream for
illegal conditions and produce ex;ror messages when such conditions are -found.

The format parser is entered upon recognition of a FORMAT statement.

At this time the location field is placed in the format identifier table. During
this process, it is checked for multiple entries. If a case of multiple identifiers
is encountered, an error ‘message is generated and the generated format table is
discarded. Also in the errdr case, the input data stream is read and ignored
until the END statement signifying the end of the format definition is found. The
format identifier table is used to set up a linkage between the format table and R
the frame operations table.

The format parser reads and decodes the statements of the format seg-
ment. The output genérated by the parser is the format table. This table is
| checked for multiple entries. If a multiple entry occurs, an error message is
generafed and the latest parameter replaces the old one. When an END étate-
ment is found, the output format table is checked for the presence of all neces~
sary parameters. The necessary parameters are: BITS/WORD, WORDS/ FRAM,
and FSP. | If any one of these is missing, an improper format speccification mes-
sage is generated and the format table is discarded. If all the parameteré are

present, then the error messages (if any) are output and the format table as

28

shown in Table 2-10 is vutput. The word number column of the table refors to
the hine words which comprise a format table.

Table 2-10. FORMAT OUTPUT TABLE

WORD NUMBER CONTENT
1 Identifier
2 Nttmber of bits in the FSP
3 Number of bits in a telemetry word
4 Number of telemetry words in a frame
5 Right most 16 bits of the FSP in octal
6 Left most 16 bits of the FSP in octal
7 Encoded telemetry modulation code
8 Telemetry bit rate
9 Encoded tape playback speed

The codes for the two encoded words are listed in tables 2-11 and 2-12.
The last 3 words of the format output table are optional parameters. If they are
absent, a zero is inserted or, in the case of the codes, a seven.

Table 2-11. ENCODED MODULATION CODE VALUES

INPUT " ENCODED VALUE
SPPH 0
BIPH 1
RZ 2
NRZM 3
NRZL 4
NRZ 5
NRZC 6

Table 2-12. ENCODED TAPE PLAYBACK SPEEDS

INPUT ENCODED VALUE

120
60
30 .
15

71/2
33/4
17/8

=3 Ul ON =

The frame parser scans the input program statements and produces an
operations table of the format shown in Table 2-13. The parser is entercd upon

recognition of a FRAME statement. During this process, the location ficld is

2Y

.

checked for multiple entries. If such a case is found, an error message lis gen-
erated and this entire segment of the program is disrégarded.

The operation table being produced as output from the frame parser and
the fofmat table produced as output from the format parser represent the total
output of the compiler. This output is a coded set of operations -representing the
input statements. The codes used are explained in Table 2-13. The form of this
output is suitable for execﬁtipn by a telemetry preprocessing system. It may be
produced as a magnetic tape, a card deck, or directly inserted into the preproc-
essor depending on the configuration of the installation. |

Table 2-13. OPERATIONS TABLE

LOC VIOP V2IL AVI OP V2 R V1 OP V2 VIOP V2
XXX BXXX O BXXX X X XXX BXXX OF BXXX XXXX BXXX O BXXX BXXX O BXXX

xxx is the numerical Val'ue defined as:
- A symbol address if no prefix is present
- A value as specified by the prefix
B is the prefix encoded as:
— 1 means the value is a number
- 2 means the valué is a data address
— 3 means the value is a program address
Oisatypel .operation code meaning: |
- 1 means add
- 2 means subtract
- 3 means multiply
— 4 means divide
o! is a type 2 operation code meaning:
- 1 means add
- 2 mcans subtract

-~ 3 mcans mulliply

Table 2-13. OPERATIONS TABLE (Cont)

iy

4 means divide

5 means equal

6 means not equal

7 means less than or equal to

8 means greater than or equal to
9 means less than

10 means greater than

11 means or

12 means and

13 meatis not

I is the instruction operation code:

0 means HALT

1 means GO TO

2 means REPEAT

3 means IF

4 means equation

5 means location expression
6 means SYNC

7 means SUB

8 means WORD

L is the linkage flag defined by:

0 means no linkage
1 means + linkage to the next instruction

2 mceans - linkage to the next instruction

Table 2-13. OPERATIONS TABLE (Cont)

A is an address field used as:

instruction meaning

GO TO branch address

REPEAT | loop index address

IF branch address

equation ‘ address of index being defined
location expression address of old location symbol

R is either the result of an arithmetic expression or a modifier code
as:

Code \ _ Modifier

0. - end of modifiers
1 | " PET

2 POT

3 PEA

4 POA

5 L

6 | F

CHAPTER Il
THE TELEMETRY PREPROCESSING SYSTEM

This chapter contains a functional description of a machine designed to
process the statements of the telemetry preprocessing langﬁage_described in
Chapter II, The design of the machine is a natural development based upon the
format of the language, as will be demonstrated when the system block diagram
is derived in a later section, However, the method used to implement this de-
sign is a new and powerful approach to system implementation. This method,
known as a functional memory, will be described in this chapter. A hardware
design of a functiondl memory device i8 pfes‘ente'd in Appendix A.

The present chapter has nine sections. The first section describes the
functional memory device. Next the telemettry preprocessing system block dia«
gram ig derived. Sections three to eight d‘escribe the six stibsystems derived in
the block diagram. Finally, section nine presents 8 summary of this approach,
discussing the advantages and disadvantages of the functional memory module
and the telemetry preprocessing system.

A. The Functional Memory Module

The telemetry preprocessing language described in Chapter II will be used
to defihe a hardware system. In using the language to guide the hardware design,
many approaches could be taken. The main consideration in choosing an approach
is that the system should have a minimum impact on its operating environment.
As was pointed out in Chapter I, this environment is highly variable in that it
depends on what host computer is chosen and on what telemetry data acquisition
system ié being used. To nccommodate this variability with minimum impact,

4 microprogrammed approach shows the most promise. Furtﬁcr‘, when cdnsi’d-

ering the various microprogrammed approaches available and matching them

32

39

with the requirements of the prcprocessiné systcm,. the most promising method

is a cellular logic array. This method offers the required flexibility to éccom-—
modate the various environments envisioned for the preprocessing system, while
simultaneously taking advantage of the lower implementation costs that large scale
integration offers.

The hardware technique chosen to implement this cellular logic array
method consists of a basic building block called a functional memory module.

The term functional memory denotes a device used to generate Boolean functions
in 2 memory system. | In this device, a cellular memory array is arranged so that
each cell of the array can be either an associative memory cell or a conventional
memory cell. In order to generate Boolean functions, thelvalue of -the inpuf var-
iables is gated into the memory array. The cells of the array are prepro-
grammed with the value of the variables required for each term of the function.
During this phase of the operation (called a search), the value of the input vari-
ables is "associated" with the value of the terms and, for every match that is
found, a register latch is set. Then the contents of this register are used as a
driving signal to read all the addresses of the memory that were selected. The
data at these locations is preprogrammed to represent the bit pattern of the func-
tion's output when the corresponding input variables are present. In this way a |
Boolean function can be created by programming a memory device rather than by
wiring a combination of logic dévices as is normally done.

The module that was designed in this work has 16 associative functional
words of the type described above, each of which is 20 bits wide. Hence, func-
tions with 16 or less terms and with a total number of input and output bits less
than or equal to 20 can be implemented in a single module. As is explained in
detail in Appendix A; the terms selected during a search phase can be logically

combined prior to setting the register latch, Further by appropriate programming,

34

use can be made of ""doh't care terms", and carry terms (from onc word to the
next) can be generated to reduce the Boolean functions. Thus by using 4 com-
bination of the ahove operations, functions with tﬁore than 16 terms can be read-
ily reduced to fit in the memory module.

The module is 27 bits wide and contains 64 conventional addresses. The
upper 7 bits ai‘e not used for function generation, but are operationilcfodes for the
45 microinstrictions implemented in the modules These microinst’mctions are
used to clear thé variots registers of the module, shift data, seléétiVely tove
data from the4 module to several other modules, connect other md“dtileé to this
ohe, transfet gﬁéntrol to anothet module, and other housekeeping futictions,

This moditle 18 designed to be suitable for construction using large scale
integtated cireuit technology, In order to implement this desigﬁ oh & siﬁgl'e chip,
a constraint thust be imposed on the number of input-output ping avaiiéble'.
Hence, the ntimber of 8ignils used for communications Is restricted. To over-
come this restriction during the generation of the various required furictions, two
powerful techniques were employed. | o

The first 18 the method of connecting functional memory modules to the
communidations bus for the purpose of cooperating in function execution. BSihce
it is the intent of this method of design that most functions be implemented on a
small humber of modules, an instruction is provided which 18 capable of forming
a; lcon.nection between 16 modules and the one sending the command at one time.
However, this method only leaves three bits dvailable for addressing purposes
because of the pin constraint on the modules. Thus, a maximum of 128 modules
are available for futiction generation,

The second technique 18 the distribution of the control function. A todule
whose control flip-flop is set is in the control state. In this state, the module is

able to control the five communication buses. Hence, it may start instruction

35

*

sequences in other modules, initiate functional cycles, transfer data, et_c‘:. The
most important thing it can do is transfer this control stéte to all other modules
connected to the bus and simultaneously retain control or relinquish it. In this
manner, many independent control sequences may be established.

These independent control sequences group the modules under their direc-
tion into disjoint sets. When the results of several independent operations have
to be merged into a common sequence, the designer who is coding the control
sequences must carefully avoid conflicting operations (e.g., separate data -~
transfers to a common destination). Further, when several controi sequences
are being feduced to one controi sequence, only one of the .original control states
.is allowed to be transferred to the new sequence. The others must be terminated |
by transferring their control state to an empty bus.

B. The Preprocessor Block Diagram

It will be shown how the device described in the previous section can be
used to implement a telemetry preprocessing system. This example will dem~
onstrate a very effective usage of LSI technology, since a single chip design is
used to implement all the functions. of the system.

The language described in Chapter II, particularly as shown in Table 2-13,
will\ now be used as a guide to derive the major subsystems which make up the
telemetry preprocéssdr.

The heading of the operation table (Table 2-13 of Chapter II) is repeated
here for convenience.

. LOCV1IOPV2ILAV1IOP V2R V1 OPV2V1OPV2
This heading identifies the various operation fields that an instruction of the
televmetry preprocessing language contains. Upon cxamination of these fields,
desirable simultaneous operations are nbted. Obviously, the instﬁction fnust

be decoded. Further, the four ficlds under the headings Vl OP V2 can be

36

evaluated sepa’rateiy at the same time. While this requirement is not strictly
necessary, it does éer\re to reduce the instruction execution time and further it
reprgsénts a natural environment of the language. Consequently, it will be
shown that the combination of direct and indirect implications of this table will
lead to a block diagram of the desired preprocessing system.

The direct implications considered thus far show the need for an instruc-
tion decoder and fof an arithmetic unit consisting of four arithmetic and logical
units (ALU's). Another direct implication of the table is contained in the R field.
As was described in Chapter 11, this field contains several parameters which
require that specialized functions be performed (e.g., parity checking, error
. statistics, etc.). Hehce, a special functiohs unit to implement all those functions
which are not inhexrently handled by an ALfJ is a characteristic of the language.

The design concepts that are indirectly implied by the table are the con-
cepts of communications and storage. Oﬁviously, an instruction decoder implies
the existence of an instruction stream. This in turn implies that the system con-
tains a program memory. Further, since the instructions are designed to oper- |
ate upon telemetry data, a data storage is required. Fundamentally, these
storage systems could be combined. However, there is no need for instructions
to Be intermixed with data. Furthermore, the flow paths of these two types of |
information are considerably different in that, instructions must direct the sys-
tem's activities, while data undergoes transformations initiated by the system.
Hence, it becomes a simpler concept to treat them as independent functions.
Further, when the data becomes transformed as a Ares’ult of the processing pro-
gram, the storage requirements tend to increase. To keep system costs in line
while satisfying this increased requirement, a core storage to hold the processed

data is indicated.

37
Finally, in the area of communications, a mecthod of gétting information
into and out of the system must be provided. This is accomplished by including
a set of input/output routines to interface to the outside world. These six sub-

systems that have been identified lead to the block diagram of Figure 3-1.

FRAME [—® ' PROGRAM [ALU
SYNC |q—| ™| MEMORY * FUNCTIONS
INPUT
OUTPUT l T l T
FUNCTIONS
HOST [™ [™ INSTRUCTION [*_| SPECIAL
COMPUTER [¢—{ <«—— DECODER [e— FUNCTIONS

I N R

DATA AND CORE STORAGE

Figure 3-1, PREPROCESSOR BLOCK DIAGRAM

The arrows in this figure repreéent the various ways that information
flows within the system. The input-output functions are responsible for per-
forming the necessary "handshaking' functions with the external equipment,
tragforming data word sizes into the internal word size structure, and storing
data in the appropriate locations in storage. Data and commands must flow be-
tween the host cOmput'ér and the preprocessor system. These commands refer
to the various control functions that are necessary to: load the program membry,
start a' preprocessor program, read error statistics, or initiate a frame syﬁ-
chronizer set-up function, Thus, two-way flow is needed between the preproc-~
essor and the external equipment.

The instruction decoder is responsible for decoding the program instruc-
tions; initiating data transfers between the ALU functions and the special func- |

tions; starting the required control scquences of those special functions needed

38

in the instruction execution scquence; recelving the e.\'térnal commarnds f1‘c;m the
host computer and dnitinting their exectition: nnd storing and rettieving the error
statistics in the core storage. |

‘During the execution of a repeat loop, this unit maintains the loop itidex,
counter, keeps track of the number of instructions in the loop, handles the
branch to the head of the ioop, and tests for loop exit conditions. Durihg SYNC
and SUB instructions this unit directs the gathering of statistics ghd all other re-
quired tests. Finally, upon completion of the processing of & dafa frame, the
unit transfers control to the output routines so that the data may _Be transferred
to the host computer. ‘

The program memory is used to hold the data formatting programs. 1t isa
1,000 location memory system where each location is 7 words 'of 20 bits each.
These 7 words hold the information described in Table 2«13 of Chapter 11, The
tields are packed according to the format of Table 3-1. |

Table 3-1, PROGRAM MEMORY LAYOUT

PROGRAM WORD N CONTENT
1 Loc, vi
2 V2, OP, 1, L
3 AR
4 V1, va
5 vi, V2
6 Vi, V2
7 " 0P, OP, OP

The operators of word 7 go with the variables of words 4, 5, and 6, re-
pectively; these three sets represent the three parameter fields of Table 2-13,
The data storage and core memory subsystems are used to store the

telemcetered data, The data storage subsystem is 4 two dimensional array which

39
holds the incoxﬁing davta stream. This data is stored, onc telemetry dqtq v&ord
per location, It is from here that the system oxtrhcts telemetry Wdrds and parts
thereof for formatting purposes. This is accomplished by the addressing algor-
ithm. In this algorithm, if x is the telemetry word number desired and if n is
the number of bits to take from the word, then the system simply takes n bits from

location x of data storage and right jﬁstiﬁes them, o

The core memory is used to storé the formatted data array with every word
assumed to be in integer format and the most significant bit being to the left. |
Further, in parity checking decisions, the sign bit is on (negative) if a parity er-
ror was detected. This array bécomes an image of the desired data array in the
main computer's memory. |

‘The ALU functions each .form an implementation of a central processing
unit. The operations implemented in these elements are: +, -, *, #, .NE,,
.EQ., .LE., .LT., .GE., .GT., .AND., .OR., and . NOT.. These elements
are primarily used for address computations to locate the télemetry word, the
number of bits to extract from that word, and to locate the core memory address
into which the data is to be stored. In the case of an IF instruction, ALU 2 per-
forms the programmed operations on the data and makes a true-false decision.

The special functions unit handles all of the required special functions.
These are: word revefsal, parity checks, forward or backward counter checks,
and counter modulus determination. This unit consists primarily of the logic
functions required to dd these tasks. It is activated by the control unit and piaces
the results of its calculations into the assembly register for later transferal to |
the core memory.

C. The Input-output Routines

The input-output routines are designed to perform the necessary "hand-

shaking' functions with the host computer and handle the translation processes

40

necessary to convert the data from the computer's word size structure to the
device's and vice—@rs:t. The input routines have the responsibility to determine
whether the incoming data is to be a program memory load, a data storage load,
ora étart system command and take the necessary action. During a program
memory load, the input routines translate the data from the computer's internal
word size to that ‘of the program memory. They also determine what program -
memory address the data are to be loaded into and keep track of ensuing ad-
dresses.

During 4 datd storage load, the input routines translate the data from the
host comptter's intertdal format to a gerial bit stream and keep track of where
the telemetry data word is to be placed in data storage. During the operation,
each telemetry data word is placed in & separate data storage word. Duringa
start command, the input routines determine the starting address of the data
formatting program and initiate the instruction decoder iitiit to start execution
from that address. A

The output routines are responsible for interrupting the éomputer upon
 completion of a data formatting program, identifying the data type, translating
the data from the core memory word size to the computer word size and shipping
it out, and transiating the program memory into the computer's format and trang-
ferring it tipon request. During a readout of the program memory, the output
routines receive a request, a stzirting address, and an ending address {rom the
input routines. These specified addresses are then translated and read out. The
parameters required for this translation (i.e., fro.m the preprocessor word size
to the computer's word éize) are placed into the microcode of the interface be-

tween the preprocessor and the host machine when the device is installed.

41

D. The Program Memory

The program memory consists of 128 functional memory modules which
‘are structured into 1,000 locations of program memory. Eacﬁ location of pro-
gram memory is 7 words wide; . Table 3-2 lists the content and destination of
the program locations resident in the program memory.

Table 3-2. PROGRAM MEMORY WORD STRUCTURE

WORD | CONTENTS | BIT WIDTH | BIT LOCATION | DESTINATION

1 Base Add. 10 1-10 ALU1.
V1 10 11-20 | aLm

2 V2 10 1-10 ALU1
oP 4 11-14 ALU1
I 4 15-18 Decoder-
L~ : 2 19~-20 Decoder

3 A . 10 1-10 ~ Decoder
R 10 ' 11-20 Decoder

4 V1 10 1-10 ALU2
\L 10 11-20 ALU2

5 V1 10 1-10 ALU3
V2 - 10 11-20 ALU3

6 V1 10 1-10 ALU4
V2 10 11-20 ALU4

7 op 4 1-4 ALU2
op 4 5-8 ALU3
oP 4 9-12 ALU4

As can be seen from the table, the data for the four ALU subsystems is
packed into modules 1, 2, 4, 5, ’6, and 7. This data is automatically sent to
these subsystems every time an instruction is read from the memory.

This device operates on a basic read-execute cycle. After a typical in-
struction is read from the program memory, it is decoded. Further, the four
fields of type V1-OP-V2 are simultancously acted upon by the four ALU func-
tions. ALU1 is computing an address for data storage in the core memofy.

The other three ALU's are computing where the required data bits in data .

42

gtorage are. Once this i8 done, those bits are extracted from the dita storage

and the special functions unit performs (he requited functions on these bits as

‘specified by the instruction. Then the newly formed data word is sent to the

core storage and control returns to the program memory for the reading of the

next instruction.

Control i8 passed from the p'roigram memoty to the instruction decoder

" after every instruction read. From there, control goes to the control Bequetice

réq111red to execute the instruction. There are two stich sequences which require

access to the prograni memory, The first is a temporary storage request. In

this request, an address {g sent to the memory and control is passed to either

the read or write data routine,

The second type of request is a read next instruction cycle. In this cycle,

as address is passed to the read program routine and control is passed to it.

This address has three sections to it: a 6-bit data address for the interior mod-

ule address, 4 4-bit module number to pick 1 of the 168 modules addressable at

any level, and 4 level umber. The dddress may be ohe that is loaded into the

program memory subsystem as the result of a branching operation, or it may be

the next successive address present as a result of the previous operation. How=

ever, in the case of a temporary storage request, the address is always directly

supplied,
MAIN SUB SUB
ID ~ SUB SUB
—» CONTROL (¢— CONT 1 [CONT 2 . N
ADDRESS ¢ ADDRESS T
UPDATE | | CHECK
TEMP 17 17 17 17 17
STORAGE DATA DATA DATA DATA | DATA
MODULE MODULES MODULES MODULES| |[MODULES MODULES

PROGRAM MEMORY BLOCK DIAGRAM |

43

The block diagram of the program memory subsystem is shown in _Fi gure
3-2. The address derivation shown there is basically a 10-bit counter whose
functional program resides in subcontrol module 1. The address is maintained
and updated in subcontrollers 1 and 2. It is sent to the ID decoder where it is
translated into a connect command which is loaded into all the subcontroller
memories. This command, a.lor_lg with the send address command which tﬁe'
":‘main control module has loaded into the subcontrolier memories, specifies what
instruction is to be read from the program memory.

Control is then passed to all subcontrollers which, in turn, send the ad-
dress and a conventional read éycle to the proper data modules. The data mod-
ules then receive control to transfer the program word back to the controllers.
Finally, the controllers send the data fields to the proper destination and pass
control to the instruction decoder. In this manner, the read next instruction
cycle ends with the address of the next instruction stored in the address register.

In a temporary storage request, the control module receives an address
which is sent to the temporary storage module. Control is then sent to eifher
the read or write routine. In a write request, the data is sent to the storage
module and a conventional write is issued. In a read request, control is sent to
the storage module after a conventional read cycle has been executed 5y that
module. Then this nfodule returns the data to the requesting module. Fiﬁally,
control is passed back to the requesting module.

E. The ALU Functions .

The ALU functions are impilemented by using 25 functional memory mod-
ules. The functions contained in these modules are found in Table 3-3.

Fach function that this subsystem pérforms is done through a control se-
quencec. In this sequence, the control function is passed from module to module

in a programmed order. The variables and operators are sent to modules 9—12

44

and control is initinily passed to module 10, Module 9 receives variable 1, ex-
.cept in the case of a divide where it receives variable 2, Modulé 11 norally
receives variable 2. In a divide, modules 11 and 12 receive the 32-bit dividend.
All other operations are assumed to contain 16-bit operands. The number rep-
resentation is.assumed to be signed binary with 16 bits of significance and bit 17
being the sign bit. |

Table 3-3. ALU MODULE FUNCTIONS

MODULE FUNCTION
1-4 4-bit multiplier table
5-8 Adder table whose input is 3 (4-bit) numbers and 2 carries

and whose output is a 4-bit result with 2 carries

9 Communications module which receives variable 1 and
holds the result of the computations

10 Communications module which receives the operator and
holds the remainder in a divide and the lower 16 bits
of the product result

11-12 Communications modules which receive variable 2

13 Counter for the divide algorithm and logical functions
14-18 Comparator modules

10-22 Subtractor modules

23-24 Carry propagator modules

25 Instrﬁction decoder module

Note all of these modules contaln portions of the control sequence
microcode. '

Module 9 normally returns the result of the operation except in the multiply
and divide cases. In the multiply, the product is held in modules 9 and 10, In
the divide, module 9 holds the quoticnt and the remainder is discarded. This is
because fractional addresses have no meaning and extensive data processihg is

not intended to be performed in this unit,

45

There are 7 control sequences in the ALU subsystem: the input se_qﬁence,
the add sequence, the subtract sequence, the compare sequence, the logical se~
quence, the multiply sequence, and the divide sequence. These seqwnces-de-—
fine all the various functions required by the ALU subsystem.

The input sequence does all the necessary preparatory steps involved in
function execution. It begins in module 10 at the point to which initial control is
transferred. First the opera_ttor is transferred to the decoder; then all the data o
registers of the subsystem are initiated;

| Next, control is transferred to modules 9 and 11 where the input varjables
are sent to all the data registeré that may require them. Control is now passed
to the decoder which in turn passes it to the .appropriate control sequence, This
is done by the decoder module.acting as an associative memory. Each 4-bit
operator is an address of the start of its control sequence. That address is
loaded into the memory address register and the transfer control instruction lo-
cated there is executed.

The add sequence uses four 4-bit adders to add three 16-bit variables to- |
gether. The adder adds three variables rather than two because the multiplier

to be described later uses this feature. The algorithm is shown in Table 3-4,
This process takes four cycles. First, the 4 adders are cycled. Then,

the indicated data transfers take place and the 4 adders are cycled égain. The

data is now transferred to the cax;ry propagators where the final 2 cycles are

performed and the data is sent to module 9 for output.

48

Table 3-1. ADDER ALGORITHM

CYCLE ADDER CARNY ProOP. | otrpur
i 2 3 4 1 5
H, Hy3 H, Hy
1 Hyy Hpg Hyy Hy
Hgy Hgg Hyy Hyy
Cially CygHg CypHy CpyHy
€4 ©C3 Gy Cpy Hy
9 0 H4 H3 HZ
Hyy CogHgy Coollyy CoyHyg
8 H;j1Co3 Hg1ConHy1Cqy Hyy
Hyy CyyHgifsy
4 Hip Cyy
Hyy
Answer is H43H51H52H10H1

Each of the 4 adders accepts as input 2 carry bits and three 4-bit hexa-

decimal digits. The output ig 2 carry bits and a hexadecimal sum digit. In Ap-

pendix A, the search controls of the functional memory module are explained.

There it is explained how the interword carries are formed and propagated.

Hence, the output equations for the 6 sum bits are

H=A ®B ®cC ®cy

=4, @ B, ©C OCL, O Cy O Cy
Hy=43 © B3'@ C3 @ Cpp @ €3 O Cyg
=4, © B, © C; O Cp O 3y @ Cyg

€O =Cp ® €y @ Cyf

CO2 =C 52

Where:

() means "exclusive or"

4T

CIx means input carry x
Cj2 means the ""any 2" carry from word j
Cj4 means the "any 4" carry from word j
st means the "any 6'' carry from word j
Ai’ Bi’ Ci means the ith bit of input A, B, and C, respectively
COi means output carry i a
Hi means bit i of the output sum .
The carry propagator aﬁcepts as input a hexadecimal digit followed by a

2-bit carry followed by another hexadecimal digit followed by a single bit carry.

 This unit outputs a carry bit and 2 hexadecimal digits. The programmed equa-

.tions are

Hj, =4, ® CI,

Hp =4, ® Cp

Hi3=A; @ Cp

Hy=4, @ Cgp

Hy1 =By © Cly © ¢y
Hyp =B, @ CLy @ Cg
Hy3=By @ Cgy

Hy, = B, ® c

72

CO = Cyg,. ' |

The subtractor sequence uses four 4-bit subtractor modules to perform
the subtraction between two 16-bit variables. The algorithm used is shown in
Table 3-5. The process takes three cycles to complete. First, the 4 subtrac-
tors are cycled. Then, the indicated transfers take place and the carry propa-

gators are used in the final 2 cycles to obtain the result.

48

Table 3-5. SUBTRACTOR ALGORITHM
CYCLE SURTRACTOR CARRY PROPAGATOR
1 2 3 4 1 2
H, Hyg Hyy Hy
1 Hyy Hpy Hyy Hyy
C,H, C,H, CjH, C,H,
2 C,H,C, H,C4HyC,
| _ | C10t10 Ca0H20M30
3 | C10810C20
» CoHyy
Answer is COH11H20H30H4

Each of the 4 subtractors accepts 48 input 2 hexadecimal digits and a carry
bit. They in turh output 4 hexadecimal result, an output earry bit, and a sign
bit. The equations that are programmed into the functional memory are

H =4, ® B, ® c

Hy=4, ® B, ® Cy,

Hy=4; @ By © Cp

Hy=4, © B, ® Cy

v}

Co = Cy2
S = 042
Where:

S means the sign bit
Bi means the complement of bit B,
The compare sequence uses 5 modules to perform the required comparison
operations of EQ, NE, LT, LE, GT, and GE, Each of the first 4 modules does
a comparison of four 4-~bit variables. The results of these comparisons are then

combined in the 5th module to form the result of two 16-hit variable comparisons.

49

*

All of the above mentioned comparisons are formed-and the desired one is sent -
to the output.

‘To do this, the decoder transfers control to module 12 which loads the data
into the comparator modules and cycles them. The appropriate address of the
output routine in module 18 is loaded and the corresponding input mask in mod-
ule 9 is loaded. Control is then passed to module 14 where the results of the
éoinpare are sent to module 18. Similarly, conifrol is then passed to modules
15—17 for the other results t:o be sent to module 18. Module 17 cycles médule
18 and then passes control to it. Module 18 will then transfer the appropriate
result to module 9 and pass control to the output routine.

The equafions loaded into modules 14-17 are

E= A4A3A2A1B 4]3332B1 .
G= (A, Bj+A; By) 71 (A,B, + (4, By+A; B)) 7
(14.13 ot 13133+ KzBZ)
L= (K4B4+ K3133) N (A, §4) + 22132+ ‘AIBI) N
(A,]—3'4+A3 —l-33+A2 '1-32)
Where 7] means "'and not' and the other symbols are as before.

The equations loaded into module 18 are

GT = G1+E1G2+E1E2G3+E1E2E3G4

LT = L, +E,L,+E E,L,+E E,E, L,
EQ = E E,E.E,

GE = GT+EQ

LE = LT+EQ

NE = GT+LT

The logical sequence performs the binary logical functions of AND, OR,
and NOT. This is done by decoding the operator and setting up the input mask

of module 9. Then the data is sent to module 13 and a functional eycle is

50

performed, Control is then pissed to module 18 for datd trnnéferrni to module 9,
Control then poes to the outplt routihe, o

The program loaded in module 13 s

AND = AB
OR = A+B
NOT = A

The multiply sequence alporithm will nhow be described. The decoder
passes control to module 11, This module setids the first hexadecimal digit of
the multiplier to the multiplier modules and cycles thetn. Then control 18 passed
to modules 1—4 where the results of the first eycle are passed to the udders and
‘they are cycled. Control tﬁen returns to module 11 which sends the next hexa=
decimal digit to the multipliers and eycles them, Control now goes to module 9
where the most significant hex result digit of the previous cycle is sent to the
adders. Control then passes through the adder modules where the data 18 trans-
ferred to the appropriate position for the next add, and the result digits are sent
to the output module. | |

Control fiow goes to the multiplier for data transferral to the adders and
the adders are cycled. Coﬁtrol is.then returned to module 11, This sequence is

then repeated three more times with a zero belng entered it the multipliers on the

| la}st time through them. Control theh goes through the adders a8 if 4 normal add
sequence Were taking place and the result Is transferred to the output modules.
The multiply units input two 4-bit operands and through o sét of Booleatt functions
produce tn 8-bit product. 1In this way, this unit cm; multiply two 18-bit varidbles
by performiig hcxadecirﬁal drithmetic operations: 'The totul process hid 7 steps.
Each number 1s tonsidered as comprised of 4 hexadecimal digits, Durlng the
first 4 steps each hex digit of the multiplier 18 multiplicd by a hex diglt of the

multiplictind,

51

During steps 2 to 5, the partial products are formed by the adders. These

adders can add 3 hex digits simultaneously. Finally during steps 6 and 7 the-

final carry ripple is performed. Table 3-6 summarizes this discussion.

Table 3-6. MULTIPLY ALGORITHM
STEP | MULTIPLY OPERATION | ADD OPERATION | CARRY OPERATION
Hy1Hy2H;3Hy
Hyy
C41%42%43%40
1 Ry1B4oRy3Ryy
Hy HioH13H1g C42 C43 Cyy
Hog Ry1 Byp Byg
2 C31C32C33C34. P43 Pyp Pag
- RaiRaoRasRay
HyiHi9H3H 14 Ca1 P41 Pag
Hoo C32 C33 a4 C4s
3 C21%22C23C 24 R31 Rag Bag B3y
Ry 1R92Ra3R04 P31 Pgg P33 Payg
HyHioHi3Hiy C31 P31 Pag
- Ha 92 C23 Caq P33
4 C11€12%13%14 Fa1 Rog Bog Roy
Ri1FioRisPg Pa1 Pag Pog Poy
Ca1 Pa1 Pog
C12 €13 €14 Po3
5 f11 Ria Ryg By
P11 P12 P13 P1g
16 and 7 CIIP11P12P13
are carry adj.

(=
2

Table 3-6. MULTIPLY ALGORITIIM (Cont)

STEP | MULTIPLY OPERATION | ADD OPERATION | CARRY OPERATION

Answer = C,,P) P, ,P oP; PoPoyRyy

Multiplier = H11H12H13H1 4

Multiplicand = H,, Hy,Hy H,,

Where
Hij is a 4-bit hex digit

Hi *ij= and Rkj are hex digits

i ey Cg
Cy {8 the kjth hex carry digit

)
Rkj is the kjth hex result digit .

P,

The equations loaded into the multiplier modules are

is the ijth partial product

Ry =448,

Ry=4,8; © AB,

Ry=A48) ® AB, ® 4By @ Cyy

Ry=4;8) © A8y ® Ay © AB; © Cyy @ Cyy
Ci=4,8, © 438, © A8, @ Cyy D Cy @ Cyy
Cy=48; O A8, ® Cpy © Cpy © Cyg
Ca=448; @ Cgy © Cgy

Cy=Cyy

The divide sequience implemenis a shift and sBubtract algorithin (Figure 3~1).
The decoder passges t:ontro'i to module 10. This module sets iip the control se=
quence addresses ahd transfers control to modile 11, Module 11 performs 4
shift of the lower half of the humerator one position left and passes cotitrol to
module 12 to ecomplete the shift. Control then goes to module 13 where the divide
shift coufit {8 Incremented and set to module 18. Control then gocs to the come

parator modules which transfer their. resulls to module 12, Module 13 then

initiates a subtract if the compare is greater thang elears the remainder if equal;
or checks the shift count for an exit condition, I no exit condliioh existg, control
goes to module 9 for a quotient shift and back to module 10 to start the sequence
over. If an exit condition is present, control go‘es to module 10, There the exit

routine transfers the data to the otitput routines 4d these routines tike control.

Shift the numerator and 1 bit left into the Clear quotient,

least significant bit of the remainder; remainder, and
—® shifting the remdinder algo 1 bit left 4——————— ghift count

Compare the remainder with the denom~

inator ‘ ‘ ‘—~l

Equal; clear the Less than Greater than; subtract the denomina-
remainder nd set continue tor from the remainder placing the
the least signifi- - difference in the remainder and set
cant quotient bit LSQE to 1

(LBQB) to 1

! !

- * Shift the quotient 1 place left. Increment the .
Not equal g | hit count and compare it to 32 - Equal; exit

Figure 3-3. DIVIDE ALGORITHM
Thus it is seen that through the use of these control sequences, which are
programmed on the module’s elementiry operation set and throtgh the concept of
distributed control, 25_functiona1 memory modules are formed ihto & conventional
ALU. The device heing described here contiing 4 of these ALU's,

F. The Data Storage find Corc Mcmory System

The data storage and core memory subsystem holds the data while it is
being processed. The tore themory holds the output data and the data storage

holds the input data, ‘T'his input data is stored such that there is onc telemetry

1

word per module address. A series of loader routines in the data vstoruge sys=
tem accomplishes this unpacking operation. The data is sent here from the input
routines. The loader routines use the bits-per-word count to control a shifting
operation which forms a telemetry data word. This word is then sent to the
storage system where its storage address is computed and it is stored.

During program execution, the data storage system is used to form new
words from parts of other words. To do this, the system is supplied with the
telemetry word number, the starting bit within that word, and the number of bits
to take. The telemetry word number is converted to an address from which the
data is fetched. The starting bit is used to load the input decoders of the holding
register so that the word bemg formed will be rlght Justlfled 1n that reglster.

The number of bits to take is converted into an input mask for the holdmg register,
The data is transferred to this register where the new unit of information is held,

The above conversions and load routines are accomplished by an associa-
tive table look-up and takes 25 functional memory modules to implement. The
data storage system is similar to the program memory system and takes 17 func-
tion memory modules to implement. | |

The core memory is a 2,000-word array of 32-bit words. The length of the
"~ memory (2,000 words) is derived from a telemetry standard (reference 13) which
limits the size of telemetry data frames to 8192 bits.

Since telemetry words av'erage about 8 bits in length and allowing for status
data where selected bits have meaning by themselves, a memory of 2,000 words
will be able to hold all the output data. The word length of 32 bits is also chosen
because of the same standztrd, since this is the maximum size any word may take.
This memory is supplied with dath, an address and @ read or write command.

The address is computed by the ALU subsystem and transferred to the address

55

register. The read or write corﬁmand is sent to this subsystem by the request-
ing subsystem. |

Data is fransferred in and out of the memory by an assembly register sub-
system. This subsystem assembles the data words from the data holding regis~
ter ixito 32-bit words and transfers them into the memory. Conversely, this
régister receives data from the memory for transferal to the output routines.
In addition, a second holding register is provided to transfer data from the mem-
ory to the assembly register ‘to form new information words from those already |
stored in memory.

The data flow path is from the holding register to the special functions
unit. From there it is sent to the assembly register subsyétem. T.his subsys~
tem receives the number of bits to be inserted in the data word and those data
bits. It must keep track of where these bits are to be placed within the core
memory word. That is done by an associative table look-up which loads the input
decoders of the assembly register so that the data will be entered into the proper
bit positions. |

There are 2 cases to consider in this assembly operation; the case where
the number of bits to insert is 20 bits or less and the case of 21 to 32 bits. The
6-bit quantity representing the number of bits to insert is sent to a decoder wheré
it is decoded into 2 numbers, such that the first number is 20 or less, and the
second is the remainder. The f.i.rst number is then used as an address to a table
of input masks where each mask contains as many ones as the value of the ad-
dress.

Control is then passed to the module which holds the current start bit value
for the as'sembly register. This value is used as an address to a table of input
decoder masks. These masks provide the assembly register module ﬁnd the in-

put mask shifter modulces with input paths for the next 20 hit locations,

56

The main control sequence thett passes to ih:e module holding the input
mask valie. This module then tranéfers the inpuf magk to the input mask shifter
modules, thereby, properly aligning the input mask bits with the data positions to
be filled. Control then passes to the shifter modtiles which load the ihput mask of
the assembly regls'ter.

Meanwhile, the current start bit value and the first number of the decoded
number of bits to take valie are sent to an adder, and control {8 sent there also,
The adder sends the sum to a decoder identical to that described above and passes
control to it. ‘Thig decoder determines whether the remuinder is Zetro or tiot: 1f
the remainder {8 zero, this means that no module charige in the sssembly replster
‘has occurred and hence, the ID commands of the subsystem do not have to be up-
dated. If this humber 18 hot zero, then the ID commands are updated to the hext
tnodule of the assembly registet.

At thig point, the appropriate updated current start bit value is sent to its
module and control passes to data holder tiumber one for data transferal, Cotis
trol then returns to the initial decoder where the reﬁainder of the decoded nume
ber of bits to take 18 checked for & value of zero, 1f its Vdiﬁe i8 pero, the opere
ation is done and control passes back to the control subsystem, 1t the value I8
fon-zero, the above process is repeated ngain except that control pusies to daty
holder number 2 at the end of the sequetice. 'Thenh, datd holder module 3 trahg-
férs the data and passes control to the control subsystem,

d. The Bpeeinl Fuhetiong Unlt

'The special functions unit implements the funéttoti oft purity check (odd ot
even), word ruversal, sjmc gtatisties, and sub ét‘atlstics. These funotiony tre
performed by routing the datt Bet through a series of modules, The selection of
what modules to use s conirolled by which functions are nsked for in the Instriv=

tion. The parity check function has data presented to it from two datd Holding

57 -
modules. The data from datalholder one is sent to the pafity generator module
and this module is cycled. Control then passes to the parity controller Which
nlaces the result of the first cycle in bit 20 of the parity generator. The data
from holder 2 is then transferred there, the generator is cycled, and the result
is placed in bit 2 of the module.

Control then passes to main control which determines if an odd or even
| parity check is to be performed. If an even parity check is required, the parity
generator is loaded with a 1 in bit 1 and another cycle is performed. If an odd
parity check is desired, no further action is needed. Now the parity bit from the
data and the one generated are sent to a 2-bit comparator function and the result
.of this function is placed in bit 32 of the assembly register; In this lmanner, it is
assured that the result of the parity check §vill be placed in the sign bit of the
host computer by the output routines. Contfol now passes to main control for
tﬁe next operation.

The word reversal function receives data from the 2 data holders and also
receives the number of bits to take as a parameter. The data is first placed in 4
" reversal modules. From here the word is reversed and placed as if it were a
32-bit word left justified in 2 temporary holding registers. The number of bifs
to take is then used as an address to 12 modules. These modules load the 5 inpuf
decoder words and the mask register of the data holding registers in such a way
tfxat, when the data is transferrjéd to these modules, it will be left justified. Con-
trol is then sent to the temporary holding modules for data transferal to the hold-
ing registers. Control now passes to main control for the next task.

The frame sync statistics function storcs in memory the result of a com-
parison of the data with the pattern, computes a total number of erfors count and

maintains a set of overall error counters for each bit position and the total over-

all error count.

58

The frame sytié pattern is sent along with the data to cight 4=<bit comparu-
tors where the ervof positions arc set. Tlicse resulls are then .scnt to the bit-
by-bit counter controls. Here, the first bit is sent to the counter control, where
the counter is advanced if the bit is set; or hot advanced if the bit is reset. The
first bit is also sent to the data memory where the address from ALU 1 has been
sent. This address is also sent to a countet where it is advanced and sent back to
the memory address register. The bit counter is then advanced and compared to
the number of bits in the pattern. If not equal, the whole process is repeated for
the next bit of the pattern.

When equality occurs, the totai nitmber of errors i8 sent to memory atid to
an adder where a running total is kept. Cohtrol is then passed to main control
for the next task. When the host machine requests the statistics, the 32 error
counters and the total error counter are transmitted to it and reset.

The sub statistics function keeps trabk of counters in the data. These
counters are assumed to be binary, changing by only 1 count per cycle and over=
flowing to a value of 0 at the end of the sequence. This function keeps track of
dropouts, errors in the count both on a bit-by-bit basis and as 4 total, and also
handles the modulus rollover to 0. In order to keep track of dropouts, this func-
tion must first establish the count. This is done by looking for 3 successive |
counts in a row. Once this occurs, the system maintains a counter for the count
value. To determine a dropout, 3 successive miscomparisons must occur, The
system then begins to look for a new count sequence.

The statistics gathered are: the number of dfopouts; the number of counté.
in the search state, the 1.1urnbcr of counts in the lock state, the number of unguc-
cessful searches, and the total number of errors. An unstuccessful scarch {8 one

in which 5 counts have passed without a count reference heing established,

"~ To accomplish this function, control is passed to the state module of the
subsystem. This module dctermines whether a count reference has been estab-
lished or not. In order to establish a count reference, the first 3 counts received
are sent to a set of counters with their associated comparators. There the counts
are updated and compared with the next count received. If 3 successive counts
are found then the reference is established. However, if after 5 counts have
" been recéived, no reference is found, then an unsuccessful attempt is tabulated
and the process is repeated. Once a count reference has been established, this |
reference is sent to the main count module. This module sends data to the com-
parator with the reference count.

If an error is detected, it is counted and the system enters a new state to
test for a loss of count reférence. If 3 errors are detected in a row, a dropout
counter is incremented and the system is set to establish a new counter referenc_e.

The statistics gathered by this function are maintained in their respective
counters until the host machine requests them. Then they are shipped out énd
cleared.

H. The Instrtiction Decoder Unit -

The instruction decoder and main control unit direct the activities of the
entire telemetry preprocessor system. This functional subsystem is composed
of 2 basic parts: the fead next ipstruction sequence and the instruction execution
sequence.

During the read next instruction sequence, the continue indicator is checked
first to determine if the previous instruction set is complete. This indicator is
set by the linkage flag described in Chapter II. If the flag is set, the next instruc-
tion is read from the program memory. If the flag is not set, the repcat indica-
tor is checked next. This indicator is set by a repeat instruction. If the indicator

is not set, the next instruction is read from the program hqcmory.

6O

If the repeat Indlcdtor i8 sct, the instruclion countet s inereniented und
comparod with the number of instructions to repeat, 1 the compririson s equal,
the number of times through the loop counter is incremented and compared with
the final loop count and, the number of instructions to repeat counter is reset to
zero. If the counter is not equal to the number of instructions to repeat, the hext
instruction is read from the prograni memory.

If the loop count is hot equal to its final value, the next instruction is read
from the loop base address which was set by the repeat instruction. If it is
equal, the repeat indicator is reset anhd the riext instruction in sequence is read.

The instruction execution seqiiences perform all the necessary data manip=
ulation that the instructions require. The halt instruction stops all moduies,
clears all the data registers, and transfers control to the output routines. The
GO TO instruction sets the brogram memory dddress register to the address in
its address field. It also stores this address in the data memory if an address |
is specified in the location field. .

The REPEAT instructiofl gets the repeat indicator, places the addiess of
the next instruction in the base loop 4ddress register, stores the loop index ad-
dress, the number of instructions to repeat and the final loop count in thelr re-
spective registers, and initiates the instruction counter.

The IF instruction will perform the indicated operations unitil a link code of
0 is found. Then if the resuﬁ; is 0, it will read the next instruction, Otherwise,
the branch address will be stored in the program memory address register. if
the location field poitits to a data memory address, the result of the arithmetie
expressiont will be p‘lace'd there.

In an thdex expression, the indicated operations dre performed unttl & link
code of 0 i found. Then the result will be placed in the indicited index location

and in the data memory if required.

61

The SYNC instruction places the frame sync pattern in the sync function
register, initiates a data retrieval operation, and then transfers control to the
syfxc function.

The WORD instruction initiates a data retrieval operation and passes con-
trol to whatever special functions are required.

The SUB instruction initiates a data retrieval operation, performs what-
ever operations are required, and initiates the sub function.

Finally, a location expression will generate the necessary data memory
addresses, perform the required operations, and place the new data set in the
indicated data memory address..

The control functions also handle the special communications required be-
tween the host machine and the preprocessor. These functions are: load the pro-
gram memory, load the data into the data buffer, read the program memory,
read the sync statistics, read the sub statistics, and begin execution. The 6
commands are received and decoded by the control unit and the required action
is initiated by this unit. Finally, upon completion of the processing of a telem-
etry data frame as indicated by a HALT instruction, the control generates an jn-
terrupt to the host .machinee
I. Summary

This chapter has described in detail the internal organization of the telem-
etry preprocessing system., It h'as been shown how a number of functional mem-
ory modules could be programmed to implement such a system. This system has
advantages and disadvantagcs which will be described next.

The telemetry preprocessing system described in this report has several
advantages over the current mcthod of operation. The language described here
offers a natural mcthod of describing telemetry preprocessing operations. It is

natural in the sense that the statements of this language réprescnt a description

62

of the telemetry data frime ih nearly the same terms one would use lo explain the
operations to another person. This ninkes the languige casy to learn and atlows
programs written in this language to serve as a description of the requitred oper-
ation. Because of this, preprocessing programs are easier to design and debug
since improper oberations would result ih an improper description of the data
frame, and thié can be readily recognized: Further, it is often the case that the
programmer who produced the processing progriam is not available at a later
‘time when a modification is heeded. Because of the nature of this langiiage, sich
a modification task is easier for another programmer to do since the operations
are not obscured by bookkeeping functions.

The telemetty preprocessing system Separates those functions which are
necessary but do not directly contribute to .the data processing phase from the
main computer. This allows the mdin computer to concentrate ott th’éc"omp‘uta-
tion phase of the processing operation, a fask for which it is well suited. Fur=
ther, this implies that the computer resources cat be applied directly to result-
producing tasks and hence, & more cost effective use of these resources s at-
tained.

The telemetry preprocessing system provides a computation-ready data
set to the main computer, fhereby simplifying the computation program. Since
all the problems associated with the telemetry aspects of the data have been cor«
rected outside the main computer, the processirig programs can be desigtied to
operate on the sensor data transformations without the nced for complex data
location and bit manipulation subroutines. This will simplify the processing
program and therohy maice it less costly to produce and easicr to motlify.

Because the telemetry preprocessing language is used to spoutfy the data
manipulation programs and is implcmentcd on a device oulside the main compu=

ter, the need for machine lovel coding to solve these problems 18 rethoved,

63

Thus, the duplication of cffort in this phase of the processing, where several
computing systems arc often involved, is also removed (1 e., the telemetry pre-
processing language solution is transferable among computer systems). Further,
-since the input to the computers is a computation-ready data set, the processing
program can be written in a higher level language such as FORTRAN, This al-
lows a spéedier solution to the processing problem.

The preprocessing system is more efficient in preparing the data for proc-
essing than a general purpose computer because the special functions unit is de-
signed specifically to handle this type of problem. Hence, the same job can be
done in a more timely fashion. Thus, the computer time required to do the pre-
processing is freed fqr other uses.

The preprocessing system is designed to interface an éxisting configuration
as though it were a standard de.vice. This allows it to be integrated into a com~
puting system with minimum changes to the system in both software and hard-
ware. This eliminates the need for costly hardware interfacing and costly soft-
ware modification. |

While the system presented here has many advantages, it is not a "cure all”
approach. Some problems still remain. The development of a new and special-
ized language creates the problem of a lack of general familiarity with that lan-
guage. Thus a training program would be required to educate the programming
staff in its usage. There is the additional expense of placing another computing
system in the data processing cénfiguratiom This expense goes beyond the initial
costs since the preprocessing system represents more components in the system
which may fail.

| The system would not be ready for immediate usage without a large pro-
gram modification cost since the functions it performs are deeply rooted in the

current processing programs. It would have to be gradually phased in as new

64

projccts arise. Turther, in a family of spaccecraft where the main ddata manip-
ulation programs are fairly well fixed, it would not be cost effcctive to use the
preprocessing system. These problems indicate 'that its short range benefits
would be small.

Since the preprocessing system is not a multiprocessgng one, it cannot
handle multiple data streams in parallel. This would require several preproc-
essor systems (one for each data stream). This adds a good deal of complexity
to the processing system and further increases its cost.

The addition of another system to the data processing configuration makes
the operation of the system more complex. This will necessitate either the pres-
ence of another operations person or special training for the current operations
staff. Further, since the preprocessor has no ability to compile its own code,
the compilation must be on another computing system and the compiled code then
tried on the preprocessor. This makes the debugging operation cumbersome and
lengthy.

The functional memory module developed in this'research has several dis-
advantages which require further study to overcome. When using the modile as a
conventional memory device, the read, write, and address functions are slow
and cumbersome to use. This is because the data must be entered through the
data register; this requires an input data mask and proper input and output de-
coder values. This could be remedied by providing a direct memory load path.
’I'He input and output decoders are clumsily loaded, in that it takes 5 instructions
to perform a full load of either register. Perhaps some form of an encoded load
for these registers could be employed.

The number of bits available for functional operations make it difficult to
implement large functions. This could be remedied by increasing the number of

bits in 4@ menory word, However, a trade-off between the number of pins on the

65

.

chip and the reliability and cost factors must be carcfully considered. Arbitrary
| shifting of data is a difficult process since the input and ouiput decoders niust be
loaded to attain the desired shift pattern. An imﬁrovement here might be to dir-
ectly implement a shifting function in the module. Reloading of the module can-
not be done by another module. Thus, some form of external load is required.
This could be improved by including a move instruction between modules. Hence,
‘pieces of code could be transferred between modules and entire functional se-
quences could be alteréd on the fly. Conditional branching and testing operations
in the microcode are difficult and slow. Inclusion of these types of instructions
in the microcode set Would remedy this.

Even with the disadvantages described above, systems composéd of func~
tional memory modules offer several major advantages over current methods.
>First, these moduies can be used to implement any Boolean function; hence, the
hardware can be tailored to fit the problem being solved by including as many
special functions as needed. In this manner, higher level programs can be dir-
ectly implemented as has been shown. Further, such a system would have only
2 basic building blocks and could be fabricated with no knowledge of the intended
use. A system of this nature is completely changeable after the intended applié-
cation becomes obsolete and thus, such a system is always useful for new appli-
cations. This feature is present because the functions and microcoded control
sequences are stored in an alterable control storage rather than a read only mem-
ory. Hence, the useful lifetime éf these modules is greatly extended.

This type of system can interface to any other system ?.n a natural way.
Thus system intégration costs are minimized. The structure of a machine de-
signed with this type of system is changeable during a problem solution. Hence

the system is adaptable to a changing problem environment. Also, many parallel

66

operations can be activited; hence, the system can employ whatever computing
power is required.

The mechanism that makes parallel opcratibns feasihle in this kind of sys-
tem is the concept of distributed control. In this way independent functions can
can be carried out independently. The data flow path through the system is what
determines the processing operations that the data undergoes. This eliminates
the necd for massive control functions usually needed to direct the entire opera-
tion. Further, by localizing control to specific functional operations and only
controlling the direction of data flow, a great deal of freedom to carry out many
different parallel operations is gained.

The functional memory module approach to the system implementation
allows relative freedom from internal architectures and can accommodate a wide
variety of internal data structures. By using this approach to systems design,
the data processing system can be tuned to the problem's structure and the solu-
tion can, in effect, be hardware implemented as is demonstrated by the imple-
mentation of the telemetry language described in this éhapter. This implementa-
tion allows the telemetry preprocessing system to be integrated into a wide variety
of data processing system configurations with minimal impact on the total (hard-
ware and software) system design. This makes the telemetry language installa-
tion independent and allows telemetry preprocessing programs to be transferred

from system to system.

CHAPTER IV

THE TELEMETRY PREPROCESSOR SIMULATION —
DESCRIPTION AND RESULTS

The system described in Chapter III is complex enough so that the concepts
and algorithms presented there need to be verified. When dealing with a concept
3 of machine design that is almost totally dependent upon program code, the de;
' bugging and verification of that code becomes almost as important as the concept.
Further, since Chapter III is presenting a new design of a system building block,
it is imperative that the feasibility of this design be established and that proof of
its correct operation be providéd. Finally, some comparative timing dﬁta be-
~ tween the new approéch and current methods should be provided.

" To accomplish this task, a simulation program of a functional memory
module was written in APL (references 10 and 11). The APL system was éhosen
fof three reasons: i'ts interactive nature, its availability, and its powerful data
structure operations. The interactive nature éf the system greatly shortened
development time. Also another important factor in shortening development time
was the ease in forming the required data structures and the simple but powerful
matrix operations that the language provides. However, because of the way in
which the language is implemented, the simulation héd to be constrained to work-
ing on a single fimctidnal memory module at a time, since the working memory
size ava.ilable is only 32,000 bytes of 8 bits edach. Thus, the data for the pre-
processing system was stored on the disk storage provided with the APL system
with each record representing an image of a particular module.

Figure 4-1. shows the functional memory module that was simulated. This
rﬁodule is described in detail in Appendix A; thus, only those features necessary
to clarify the discussionA of the simulation will be prcsént_ed here. The memory

array shown in Figure 4-1 is composed of 64 words which are 27 bits each,

67

68

However, 20 of these bitg are used to perform functional operations and a func-
tional opcration requires 4 words to implement. This array, L]léreforc, is sim-
ulated by a three-dimensional data structure ﬁhose dimensions are 16 by 27 by 4.
In this manner, the 16 possible distinct functional operations which require 4
words each can be easily implemented.

This memory is used to store the microinstructions which control the data
" flow paths and operations of the system. Thus, the microprograms must be ex-
cluded from functional operations. This is done by the inhibit register which is
simulated by indexing only those locations of the first dimension of the memory

array which are to be included in the functional operation.

FUNCTIONAIL. MEMORY MODULE

INPUT »| PROGRAM | | ADDRESS |
PINS CONTROL CONTROLS REGISTER
INFORMATION
INHIBIT [—» MEMORY [—*| SEARCH [—#|SELECTOR
REG |g | ARRAY |, |CONTROLS|q | REGISTER
MASK
REG
L
DATA REG
i
»| INPUT-OUTPUT
DATA CONTROLS
Figure 4-1, INFORMATION FLOW DIAGRAM OF A

The data register contains the inputs to the function being implemented in

the memory array, as well as the outputs of that function. To scpa"ratc thege

69
values, the mask register is used in gating information into and out of the mem-
ory array. This is accomplished by the logical product of these two regiétcrs for
gating information into the memory array, and the logical product of the data reg-
ister and the complement of the mask register for gating information out of the
memory array into the data register.

| Once information has been gated into the memory for a functional operation, |
the logical product between the true information and the true select bit of all the
selected locations must be formed. Also, the logical product of the false infof-
mation and the false select bit must be generated. This is done by forming a
matrix logicél product between the true information and the 3rd element of di-
mension 3 and between the false information and the 4th element of dimension 3.
These 2 logical products are then '""ORed" together to form the functional output
of each input data value and its corresponding set of functional terms.

At this point in the operation, the information can be gated.onto 1 of 4 term.
lines. This is done by using the first 2 elements of dimension 3 to form an index
to a term matrix. The elements of the rows of this matrix are then "ORed" to-
gether and complemented to form the required Boolean expressions. As is ex-
plained in Appendix A, these terms are now combined in various ways to form'
carry terms and to set the cor;‘esponding cell of the selector register. These
operations are simulatéd by performing logical matrix operations which are part
of the APL operator set. |

The last step in the simulation of a functional cycle is to use the selector
register to compute the indices of the first dimension of the memory array which
are to be used in readiné the function's output. Then the cycle type controls are
decoded to determine if this is to be a '"read true" only cycle, a ''read false"

only cycle, or a read "exclusive or' cycle. The appropriate information bits are

70

formed and the logical product betwech these bfts and the corhplement of the
mask register is performed to enter the functions output into the data register.
In this manner, all of the functional operations that a module can perform are
directly simulated.

As was mentioned above, the module contains & microinstruction oper-
ation set. There are 43 instructions in this set. These instructions are grouped
into 3 groups: the load group, the c_:lear group, and the communications group.
The first 2 groups load or clear the various registers of the module, The third
group handles all the communication and control functions of the module. The
load and clear type instructions are simulated directly on instruction by in-
struction basis. 'The other instructions set the various control states in the
module or generate communication requests as required.

The instructions are decoded by using this operation code as an index to .
matrix of program labels pointing to the individual instruction subroutines.,
These routines perform all the tasks required of the instructions as described
in Appendix A. The most interesting task performed is the communication
request. In the similation, 5 types of communication bus requests are defined
for the bus simulation routine. The first of these requests is the connect re-
quest, where the réquesting module is connecting its output to one or more
other modules. This is done by generating a list of module numbers which will
be read from the disc in sequence whenever a communication is issued.

The second is a drop connect request which oceurs when the requesting
module is placed in a stop condition as dictated by bit 21 of the microinstruc~

tion set. This is implemented by emptying the list of connected modules.,2

2 A .
In the APL system, an empty data structure is permissible, This structure

is a vector with no elements,

71

The.next request is a normal transfer request. In this request, any in-
struction (except a connect request, a selector transferal or a control trans-
feral) may be sent to all connected modules. This is done by reading into the
work space, each module in the connect list, in sequence, and executing the
instruction present in the bus register. After execution, the modules are re=-
~ turned to the disk file, Hence, the disk file contains a current image of the
system being simulated.

A sélector transferal request is the only two-way communication in the
system. This instruction is intended to be used for functions whose total_ num-
ber of inputs and outputs exceeds 20. In this case, the expressions to be gen-
erated by the input values may be located in one module and the function's out-
put in another. The operation then will be to do a functional search on the input
module. Then the output module will send for and receive the selector register.
The output module then can execute a functional read to complete the function.
This is simulated by reading the input module from the disk and transferring
its selector back to the output module.

The final request is a transfer control request. Since the simulator is
not designed for parallel operations, this request will create a job queue if a
mgltiple control transfer is encountered. The form of this queue is a matrix
whose number of rows équals the number of modules connected. The columns
are comprised of the current state of the system (i.e. , the destination module
of the request, the réquesting module ﬁumber, and the instruction being trané—

ferred). If the 'requesti'ng module is. not in the stop condition, the simulator

72

will contintie to redd and execute instructions front that module until either a
stop is reached or another control transferul is reached, in which eusc, it witl
be placed at the bottom of the queue. Then the task at the top of the gueue will
be removed from the gqueue and that control path will be executed until one of
the above two conditions is met. In this manner, the job queue will eventually
empty when the system rehirns to a single control path.

At this point, the reasons for a simuldtion have been presented and the
simulator has been described with the exception of the measurements it gathers.
The parameters measured by the simulation are: the number of microinstruc-
tions read, the number of bus connects isstied, and the number of bu’s‘_-traﬁsfe‘r
requests issued. These parameters were chosen because they represeht all of
the different timing sequences that are found in the system and hence by making
various assumptions about the length of these sequences, repregentative tlmmg
data regarding system operations can bé computed.

Not all of the 6 subsystems described in Chapter III were simulated.

This was primarily because of the large amount of processing time that is re-
quired to run the simulation: The central processor time required for the

IBM 360/95 computer varied from 22 seconds for a compare which is the fast~
est operation to about 30 minutes for a divide. This made it impractical to
simulate the entire system. Further, certain subsystems are simﬁie eniough
so that a simulation is not necessary. The instruction decoder siuiply ad-
dresses a set of microroutines which in turn sctivate control sequence in the
other subsysteins. Thus if the control sequences‘are simulated, there is no

need to slmulate the decoder. Hence it was tot simulated, The program storage

73

and data storage subsystems are used as a conventional memory. Since the
conventional memory features are checked in simulating other functions, there
was no need to simulate these subsystems.

The functions that were simulated .were the data input routines, the ALU
functions, the data assembly registers, and the special functions unit. Because

| of the similarity between formatting the input data for storage in the data store
and formatting the output data for transmission to the host computer, there was
no need to simulate the output routines. The results of these simulations will
be presented next.

The ALU functions that were simulated represent the programs that
would be requiredv in the 25 functional memory moduies which make 1 ALU
subsystem. These include all the functional tables and microroutines needed
to implemént the unit as described in Chapter III.
| Table 4-1 shows some typical results of a simulation. The 2 columns under
the subtract function arise because of the need to complement the answer when
the sign of the answer goes negative. This is a requirement because the num-
ber representation of this system is signed magnitude in which all magnitudes
are positive binary integers. Ihe 2 columns under the divide function repre- -
sent the minimum and maximum length sequences .required to implement the

- shift, compare, subtract algorithm discussed in Chapter 3. Lastly, the two
columns under the compare function arise because of the parameters. When
- the signs are different, there is no need to generate a full comparison between

the numbers.

74

Table 4-1. SIMULATION RESULTS FOR THE ALU FUNCTION

| sup- | MULTI-| ... | LOGI-| COM-
FUNCTION ADD TRACT | PLY DIVIDE CAL PARE
Functional cycles 8 9 13 44 129 385 1 1 10
nstruction reads | 166 | 175 235 541 2396 9052 74 102 137
Bus connects 40 40 53 146 648 2151 18 22 29
Bus transfers 72 74 97 261 935 3911 31 43 60

To assign a time value to these operations, assume that emitter coupled
logic (reference 19) is used to implement the circuit design described in Appen-
dix A; then a functional cycle typically takes about 100 nanoseconds, a read
typically takes about 20 nanoseconds, a bus connect typically takes about 10
nanoseconds, and a bus transfer typically takes about 20 nanoseconds. Then
an add of 2 16-bit numbers would take 5.96 microseconds, a subtract would
vary betwegn 6.28 and 8.47 microseconds, a multiply would take 21,9 micro-
gseconds, a divide would vary between 86 and 319.27 microseconds, a logical
operation would take 2.38 microseconds, and a comparison would vary be-
tween 2.22 and 4.15 microseconds., These timing x.ralues compare with a
medium speed conventional machine with a slow divide. Different assumptions
about the operation times (particularly the functional cycle) would yield dif-
ferent results.

The input routines were simulated by executing the microcode of the
"ten modules that make up this subsystem. This subsystem assumes that 12
bits of data are received. It contains as a parameter, the number of hits in a
telemetry data word. The received bits are then shifted into a 32-bit shift
register, 1 hit at a time. After each shift, a bits per word counter and an
input bit counter are updated. These counts are then checked for exit con-
ditions. If the end of word is detected, the contents of the shift register are
transferred to the data storage memory. If the end of input is detceted, a re-

quest for the next 12 bits is issued.

75

The measurement parameters for these ‘routines ﬁre bresentcd fqga
6-bit word and a 32-bit word. For the 6-bit word, the values are: 281 in-)
structions executed, 56 connects, 116 transfers, and 14 functional cycles.

The values for the 32-bi£ word are: 1089 instructions executed, 271 connects,
479 transfers, and 67 functional cycles. Thus the data storage time required to
format and insert these words into the memory varies from 9.3 microseconds

- for a 6-bit word to 38.2 microseconds for a 32-bit word, These times translate
to a data transfer rate slightly under a megabit.

The data assembly register subsystem is a 22 module subsystem whose
parameters are the number of bits per word and the number of bits to take.
This latter parameter is sent here from _the ALU subsystem. The assembly
subsystem contains a 32-bit data holding register and a 32-bit assembly reg-
ister. The rest of the system is concerned with keeping track of the current
bit position for data insertion into the assembly register and with shifting the
input data to that bit position. This is done by a table look-up of the proper
assembly input mask and the proper data holder output decoder values. The
address f§r the table look-up is the value of the current bit position. This value
is kept current by adding the number of bits to take to the old current value to .
o.btain the new current value,

There are two .operations in the subsystem: assemble and dump. An
assembly has 155 instruqtions executed, 41 connect, 87 bus transfers, and
2 functional cycles, while a dump consists of 55 instructions, 11 bus connects,

and 35 bus transfers. These figures translate to times of 5 microseconds and

1.7 microseconds, respectively.

The special functions subsystem is # complex unit c(mt:l_'lnlng 123
modules. It implements the functions of data retrieval, parity checks, data
reversal, sync word error statistics accumulation, and subcom counter error
statistics accumulation. The data retrieval section contains 16 modules. It
receives as parameters from the ALU functions the current word number, the
starting bit within the word, and the number of bits to take., It uses the current
word number of derive the address in data storage of the data word. The other
2 parameters are used to load the input decoder and mask, so that when the
data bits are received from the memory they will be right justified in the
32-bit data holding register.

The parity check section contains 5 modules. It receives the data and a
request to check for either even or odd parity. The check is performed with 4
functional cycle and the error bits are sent to the data assembly register. The
reversai section has as a parameter, the number of bits to take., This param-
eter is used as an address for a look-up table of input masks and output decoder
values. These values are loaded into the 32-bit reverse data holding register.
These values insure that when the data is sent back to the data holding register,
it will be right justified. The subsystem contains 8 modules.

The frame sync word error statistics collection subsystem contains 50
modules. Of these 32 are used to hold the bit by bit error distribution counters,
In addition, the subsystem accumulates the total error count and the one-to-
zero error count. It also outputs these statistics on a frame by frame basis.
This subsystem has as parameters the number of bits in the patterti and the
pattern. The data containing the received pattern is sent to this subsystem
where it is compared 4 bits at a time with the true pattern and the errors are

totalled.

77

The subframe counter error statistics collection subsystem con;ains
44 modules. It reccives as parameters, the number of bits in the counter,
the counter modulus and the counter mode (forward or backward)., The system
keeps track of the current count and the status of that count. The count status
is in a searching mode until 2 consecutive counts are detected. It then 'enters

- the count verify state. The system will return to the search state if the next
count .is not in sequence, or will go to the locked on state if it is. It will re-
main in the lock state until 3 consecutive non-sequential counts are detected.
The statistics gathered by this subsystem are: the number of dropouts (i.e.,
the number of transitions ~froﬁ1 lock to search), the number of counts feceived
while in the search state, the mumber of counts received while in the lock state,.
the number of non-sequential counts recei_ved while in the lock state, and the
number of unsuccessful search tries. For this last statistic, a successful
-gearch is defined as the ability to attain lock within 5 counts. This statistic
gives an indication of cyclical type errors. The subsystem accomplishes this
task by maintaining a set of counters for the various states.

Table 4-2 shows the results of the special functions unit simulation.
Thése results show the individual timing for each function on a per word
basis. Thus, for example, if the sync pattern had to be parity checked and
reversed, the entire operation would take 13,2 microseconds including the
time required for data retrievval.

In conclusion, this chapter has presented a description of the program
written to simulate thg telemetry preprocessing system. This program was
useful in verifying the correct operation of the system and in proving the
feasibiiity of using functional memory modules to implement such a system,
Further, the timing results gathered by this program werce presented without
comparison to other implementation methods. This cdmpnrison will be the topic

of the next chapter, which will present the results and conclusion of this work.

Table 4-2. BPECIAL FUNCTIONS BIMULA'TION RESULTS

78

OoF I'UNC- CUTION
FUNCTION OF BUS OF BUS . »

, TIONS | '| CYCLES | (USEC)
Data Retrieval 160 40 80 0 b
Parity 28 6 14 2 1
Reversal 32 18 48 0 2.8
Sync 230 50 80 4 6.7
Sub 63 16 35 4 2.5

CHAPTER V
CONCLUSIONS AND RECOMMENDATIONS

A, Conclusions

The main effort of this research was to develop a higher lével language
capable of performing the necessary bit manipulation operations to prebére te-
lemetry data for computer processing. This effort was greatly assisted by the
usage of the APL programming system. This system made it possible to easily
explore various compiling methods and various language operations. Further,
because of its interpretive natui'e, the development time for this project was
greatly reduced. Another factor in reducing this development time is APL's
simple but powerful vector operators. The:.y_made it possible to perform complex
operafions without the need for complicated bookkeeping algorithms.

The telemetry preprocessing language developed also has a set of simple
but powerful operators. It provides a means for describing complex bit manipu-
lation problems in a concise fashion without the need for lengthly housekeeping
algoritbms. By using this language, the development times for producing telem-
etry data processing programs can be shortened because the data is ready for
ingeétion into a well known processing algorithm (depending on what sensor is
involved). Hence the pfogrammer can begin to work directly on the problem
solution instead of spending a great deal of time designing data structures and
tracing bit paths from the telemetry data to this data structure set.

As was shown in Chapter III, the language described in Chapter II was used
as a guide for specifying a telemetry preprocessing system. This system was
designed as a peripheral device to a host computer. This method was chosen

so that the total system is capable of being installed at the various installations

79

80

which process telemetered data, In this manner, the difficulties of past attempts
are overcome,

. Although the original goal of this investigation was to produce a system
which would enhance the art of telemetry data processing; the most significant
result was produced along the way, The original goals have been fulfilled with
the design and specification of the telemetry preprocessor system an'dvthe telem-
etry preprocessing language. But it is the extension of the concept of a functional
memory (reference 8) into the functional memory modile that represents the real
contribution of this work.

The concept of implementing Boolean fiinctions in a cellular memory arrdy
for the purpose of designing flexible control units for microprogramming appli-
cations has been extended into 4 systems building block. A device has been
designed which is {deally suited for LSI implenientation since it has a high ratio
of gates to input pins and a highly repetitive structure. Further, since within
this device can be stored not only the functional programs required to implement
Boolean functions but also the microcode which directs the flow of information
between modules, this device attains the greatest possible flexibility of any 1SI
chip structure. A set of chips of this nature are capable of implementing any
Boolean function.

The work perforrﬁed in this investigation demonstrated that 435 of these
chips could be interconnected to form a telemetry preprocessing system, The
major portions of this system were simulated and the results of that simtilatiod
effort were presented in Chapter IV. Following is a comparative study of thig

simulated data with that of an optimized process on the CDC 3200 computet;

81

In comparing ihe time to perform various operations of the preprocessing
system to that of a medium specd machine such as the CDC 3200, it is found that
the preprocessor arithmetic operations are somewhat slower (e.g., an add takes
6 microseconds on the preprocessor while only 2 on the CDC machine). The logi-
cal operations also are slower by a factor of 2 to 4 but the speciai functions are
 much faster. A reversal of a 32-bit data word for example would take 260 micro-
seconds on the CDC while only 2.5 on the preprocessor. Similarily the other
special functions show A factor of 100 speed improvement. To further illustrate
the significance of this fact, the processing time for the entire OAO-A2 direct
digital data frame presented in Chapter II was computed for both systems. The
‘CDC machine using an optimal algorithm taikes 36,640 milliseconds to do these
operations while the preprocessor takes only 20,184 milliseconds, a factor of
45% improvement. These functional memory modules, however, are more complex
than the 3200 because they are designed for flexibility. One measure of complex-
ity that supports this fact is a physical comparison of the systems. The 3200
computer contems 250,000 gates while the functional memory modules that make
up the telemetry preprocessor contain 5,220,000 gates. However, because of
the difference in logic technology between these 2 systems, the 3200 contains
9400 logic cards while the telemetry preprocessor system contains only 9 logic
boards. ”

Another aspect of the functional memory concept that contributes to its
usefulness as a system building block is the manner in which the control function
is handled. Each module contains a state indicator which can make it a control
module. As a control module, it can direct the activities of other modules, This
makes it possible for many control seqeences to be activated in a system con-
structed with these modules. Thus independent functions can be executed inde-

pendently.

&3

In summary, the major contribution of this reseatrch wis the development
of an advanced hardware device for use us 4 system building block. This device
is a four-state cellular logic module known 4s 4 functional memory module and is
suitable for LSI implementation. The fact that this device is a building block was
demonstrated by showing how 435 of these moduies could be used to implement a
telemetry preprocessing system which was designed by using the higher level
Vl language discussed above as a guide. This system is more complex, hardware-
wise, when compared to a Control Data 3200 computer. However, it compares
favorably timewise when a benchmark program ig executed. The 3200 comptter
was chosen for comparison because it is currently being used in this function at

the Goddard Space Flight Center.

B. Recommendations For Future Research

During the course of this research, some interesting related problems
have been posed. The functional memory module offers a powerful tool for
implementing digital machinery. However, several questions in this area need
to be considered first. How fast can arithmetic operations be implemented using
devices like these? Can large high speed computing systems be implemented
using these modules as their only building blocks ? What is the feasibility of
making these modules a standard building block for digital systems? Several
improvements to the module which offer partial answers to these questions dret
inclusion of a general shift register, increasing the size of the memory, incli=
sion of a move instruction to move the microcode from one module to aticther
and the inclusion of conditional test and branch microoperations. The impact
'~ of each of these changes should be evaluated from the viewpoint of the above
questions to determine if enhanced capability is being provided to the module

or not.

83

The functional memory approach to building systems offers the possibility
for implementing dynamically alterable machine structures. Such a structure
raises a numbef of questions. How can such a machine be controlled ? How‘
can a data processing problem take advantage of an adaptable machine? How
cén machine failures and prdgra.mmipg errors be diagnosed? One method of
, cdntrolling such a machine would be to construct éart of the machine such thai:

- it contains unalterable code required by the operating system. The compilers
that would allow the user to make up his onn instructions could be designed.
Hence the syétem could be tuned to match the problem being solved. .Then as
the processing progressed a machine status vector could be periodically updated
‘to provide a history of what is happending in the machine so that errors can be
detected. Thus the items that require investigation are what the unalterable code
should be, what information belongs in the machine state vector, and what method
of description should be presented to a compiler to allow the user to make up-

his own instructions.

APPENDIX A
INTRODUCTION

The telemetry preprocessing system described in this ﬁiésis must be ¢apa=
ble of handling word 8izes that range from 6~ to 32-bits, be 'ai;Ie to reverse these
words end for end, be able to selectiveiy complement bits in th’j’e‘se words, per-
form error measurements on the words and collect statistics; .'ahd intérface to a
wide variety of computing and data recovery machinery, While 4 classical hard-
wired approach could be implemented to accomplish this task, a humber of spe-
cial cases would arise which would lead to a costly and overly cdmplex abproach;
e.g., a separate hgfdware interface for each type of computer would be required.
Microprogramming techniques (reference 18) offer solutions to these problems;
however, hnplementétions of microprogramming systems have a fixed set of
hardware registers and a limited number c;f interconnections capable of being
program controlled. Consequently, using these machines still represents a
transferal of the coding problems from machine language code to microcode.

- Many of the inefficiencies of the problem solution still remain,

Thus a decision was made to design a system with a minimal number of
building blocks to reduce costs, and with enough variability to cover all aspects
of the problem. The first constraint dictated the use of large scale integration
(LSI) technology: The second constraint implies a microprogram approach but
with dn unspecified nimber of hardware registers so that the machine could be -
coded to fit the requirements of the problems. |

As 4 result of the decision to use LSt technology, two agssumptions were
made: (1). no functional process would be hardwired.i'nto the machine and (2) the

number of lines interf:icing the module to the rest of the machine would be forty

or less. The first ngsumption wis que td provide the machine with the proatest

84

. L
[

possible freedom from architectural constraints. _The second assumption con-
cerns the practical aspects of using LSI since (a) backplane wiring problems
must be considered and .(b) the majority of failures and the largest costs of LSI
chips are associated with the number of pins on the chip. The device that fits
these characteristics best is known as a functional memory module.

The term functionai memory cohnotes a device used to generate Boolean
expressions in a memory device. Basically, it is a method of arranging a cellu-
lar memory array such that each cell of‘ the array can be either an associative
cell or a conventional memory cell. Additional gating is provided at the array
boundaries so that Boolean functions can be generated by using the above two
memory types in combination. The associative nature of the memory is used to
"search' for a set of preprogrammed Boolean expressions in the input data.

Then the results of this search are used as a con\}entional address to "read" the
function output from specified cells of the array.

The format of this presentation of the design features of a functional mem-
ory module will start with two Boolean functions. These functions will be imple-
mented with AND-OR logic and then successive partitions of that implementation
will be employed to demonstrate the transformations réquired in going from con-
ventional logic to functional logic. Also, in this manner, the impoftant charac-
teristics of a functional. memory concept are best illustrated because the reader
can be led from familiar concepts to the newer less familiar ones.

A. Functional Memory — A General Description

The basic concept in constructing a functional memory is De Morgan's law
which states that the Boolean expression ABC may be represented as (A + B + C).
The overbar mecans NOT and + means OR.) To implement this law a cellular

memory array is constructed. This array has a two phase cycle consisting of

8¢

scarch and read. Further, this operation is associative in nature, in that only
thosc terms which satisfy the search criteria contribute to the read phase.
Consider, as an example, two Boolean functions of three literals (variables)

each:

[, =A+BC
f2 =ABC
Classically these functions could be implemented with the following struatured

set of gatingt

A
B ~——— NoT oR ——— 1
' AND
c
A NOT

. P

AND
B NOT
859~ |

Figure A-1. CLASSIC GATING STRUCTURE

87

Now applying Dc Morgan's law on a term-by-term basis, the equivalent

functions and implementations could be huilt.

/

1

f =A+(B+C)

f2=(A+B+C)

INPUTS : OR'ING | NOT'ING | or'ing
| | |
A NOT } : NOT ;
B g |- | OR —fi
| I NOT !
| OR I I
c NOT } l I
l | |
I, | |
| | |
A [
T | |
8 i | !
| OR ' NOT — fo
¢ NOT . + I I i
I I I 552-2

Figure A-2. MODIFIED GATING STRUCTURE

38

in this implemettition, notice the 4 divisions of logic whi;-h result, The
inputs are sclected cither in true or false form dnd then a sequetnice of OI{-NO'I_‘-
OR is performed to obtain the required function. This is the form of a functional
memory implementation, Conslder a memory array where each cell is com-
prised of a true flip-flop and a complement flip-flop. Then the selection of inputs
(true or false) can be done by setting the appropriate flip-flop and allowing the
true and false forms of the ﬁrue or falge bit line to drive a pair of AND gates as

is shown in Figure A-3.

TRUE BIT FALSE BIT
LINE (TBL) LINE (FBL)
TRUE FF FALSE FF

(TFF) B AND (FFF) = AND
+—> >

TERM
LINE
(TL)

552-3

Figure A-3. CONCEPTUAL FUNCTIONAL MEMORY CELL

These AND gates are then tied together on the term line which effectively
accomplishes the first ORing operation. By placing an inverter at the end of this
term line, the NOTing operation is accomplished. Reculling that we are describ-
ing a two phase memory op'e'ration; the otitput of thig invertet is the inpitt to &
register of latches called selectors. What has been described to this poltit 18
the "'scarch phase' of a functional memory which accomplishes the input, first
ORing, and NOTing operations. This operation consists of "searching' for which

terms are present and "selecting'' thoge terms for the'rending' eyele, Thus,

89

referring to Figure A-2, the inverters of the NOTing siep each represent a term
line (or conventional word line) of the functional memory array.

During the reading operation the roles of the term lines and the bit lines
are reversed. As shown in Figure A-4 the selected term lines are selectively
gated onto the-bit lines by placing data related to the desired function output in the)

~ true and false flip-flop.

——]
¢ AND TFF FFF AND |om®
- TL
— —a
o@| AND TFF FFF AND |im®
- T
TBL ' FBL
£552-4 .

Figure A-4, CELL INTERCONNECTION

Hence, the second ORing operation is accomplished through the connection of the
outputs of these AND gates to the'true and false bit lines. Consequently, either
bit line is capable of carrying the entire function output or a portion of it. At the
end of the bit lines, the function may be obtaincd by gating either the true bit line
or the false bit line into a data register.

Scveral things should be mentioned at this point. First, the cells of the
memory involved in the scarch phase and in the read phasc are obviously not

the same, although they could be if the cclls were reloaded but this would be

90

inefficient, Hence soite nwzmé of séuﬂrathm the search variables from the

rend variables must be included: ‘this is necomplished by mcunﬁ of 4 datd mask
rcgi‘ster a8 18 shown in Fipure A-B. This register is connected between the
data register and the memory array. The true side of the mask register will
allow datd to enter the array for search purposes. The false side of the mask

then allows data to be gated out of the array into the data register during the read

phase.
FBL TBL
I 4
il
—
AND AND
T 1t
TRUE -
FALSE
MASK
v ¥ ' v
AND AND
TRUE
» FALSE
DATA

Figure A8, TYPICAL MASK AND DATA CELL INTERCONNECTION
Becond, since each cell of the array contains two flip-flops, there tire two

other statcs of these tells which ean be used during the scarch phages Uy selling

01

both the true and false flip-flops to zero, it is scen that this particular variable
has no effect on the term line since a true state will be generated no matter what
the condition of fhe input data, hence this is called the "don't care state." Fur-
.thér, by setting both of these flip~flops to one, it is seen that as long as this
variable is allowed to partake in the search phase this term line cannot be se-

" lected because of the inverter and thus this state is called the "inhibit state."
Finally, it seems that some use could be made of the true and false bit
lines during the reading phase. Indeed, by placing an exclusive OR function be-
tween these bit lines prior to setting the data register, a very powerfﬁl operation
in terms of shortening the length of these arrays is obtained.

Now let us examine what our two example functions would look like using
a functional memory. Referring to Figure A-6, the data register is at the bot-
tom and the inputs are labeled. This figure represents the function exactly as in .
Figure A-~2. The top word of the memory is the A input.to function 1. The next
word is the B C input. The last word represents function 2. Notice the mask
which separates the inputs from the outputs. Also notice the manner in which
the ORing operations are accomplished.

This is the basic concept of a functional memory, most of which was de-
scribed in a paper by P L. Gardner (reference 8). Next, the concept of the
functional memory module will be described. This module contains several ex-
tensions of the above described concept.

B. The Functional Memory Module — A Systems Building Block

In designing the concepts of a functional memory into a practical system,
the block diagram of Figure A-7 evolved. The memory array, selector register,
and mask and data registers represent the cssence of the concept as previously

described. However, in order to take advantage of the conventional memory

7V

Figure A-6. PROGRAMMED FUNCTIONAL MEMORY UNIT

—1 — — g N nam) mag [g
*1ir]rlIl® IR ° 11[7TF1{1® ° I [tlFll]® ° i+l ®
1 o}l r*L""r olo i olo 1 1{o 1t olo —
° o ° ° ° ° e ° E;
T 3 I I 3 T 3 3 3 ‘r>°__+: e |— L [
b—-[[—ow——l — ™ r——-oo—-l '_..4. I]
*JITlFlL® °jiITIFlILe °f1ITIFlILe *lilrlrliLe °llLTlFliLe
olo 3L 1o 171 of1 11 1o 111 olo I
° ° ° ° ° ® o ° ™ ® g
3 S T 3 3 3 T otHe ML I
D—'l t r——ﬂ()——-l 1 r——-(N ' ' l——'“""ﬁ 1 r—(Ni'j [°©
B AR R R e s R REA AR A il E I °{ilT]FllL® N
al 1o "t 1o nae! o1 imAg oo 111 1o f
™ ™ ° ° ° ° ° ™ ° ° g
[T I I Py T T T T o He|— L H
[] t [I T r] T = 1 +— | - .
Sl Tlelle | 1B ellellPirmileilelPBlrmiletleIBlrwilellel
y w0 p ol | il p b | I T~ SEARCH
L L N (o | o |
] 1
[— T r— T
@ o F [D F) o F Y r k: ® D H READ
L L L] Lt Ll
A B c .
| 2 552-5

aspeets of this device, the memory control, address register, and read control

scclions were necessary.

S
I E S
N —{ A I—» E
H R L A
C E o)
;'3 ‘ 16 X 27 H ¢ 8
' FUNCTIONAL T R
T > MEMORY c 0 E
ARRAY 3 R [* g
£l — R B R
G *— o [* 1 ¢ E
L G
1 ? v v
READ CONTROL
f ‘ MEMORY
- : CONTROL
MASK 8 DATA REG
PROGRAM REGISTER
INPUT & OUTPUT GATING

552-6

Figure A-7. FUNCTIONAL MEMORY MODULE BLOCK DIAGRAM

Since applications typiqally involve more than one module and since data outputs
from one module are not normally aligned with data inputs to another module, the
input and output gating sections are necessary. Further, this process of trans-
ferring data between‘modules requires control so the program register is used
to decode and control data flow type instructions. These instructions are typi-
cally stored in the same module as the functional table; and, thus, some mecans
of excluding thc;m from the scarch phase must be provided. This is done in the

inhibit register. Finally, it was found that part of the rcad functions, as described

9.4

ahove, should be carriced out during the scareh phise and so the seireh cohtrols
are provided. These scetions will now be deseribed in delail.

‘Examining various applications of the memory array as pictured in Figure
A-6, it was found that inefficient use was being made of memory words. In many
cases, several terms could have been formed in one word if only the means were
available. Furthermore, iterative processes stich das carry propagation cotld be
handled more efficiently if greater flexibility in combining and creating term line
expressions were provided.

C. The Memory Cell

Figure A-8 shows a typical cell of the 16 x 27 functional memory array.
In addition to the true and false flip~flops (TFF and FFF), two control flip-flops
(CFF1 and CFF2) have been added. These flip-flops are used as search control
parameters to gate the incoming Boolean variable to one of four term lines TL1—
TL4. This is done through gates D1-4 and C-3. As can be seen, either the true
bit line (TBL), through gate 01, or the false bit line (FBL), through gate 02, may
be placed on any one of the four term lines. This allows one to generate four
terms to be combined during the search cycle as will be seen when the search
controls are discussed.

| During the read phase of the functional memory cycle, the word line be-

comes active if this word cell is selected. Then through gates R1—R4, one to
four terms of the output are gated onto bit lines BL1, BL2, BL3, and BL4
simultancously. These terms will later be shown as inputs to an exclusive OR
network when the read controls are discussed. |

The CLOCK, used concurrently with L.LD1-4 and their complemetit, repre-
sents the load memory controls. This CLOCK linc is activated hy the tipper fmjr
bits of the memory address, while the lower two bits generate LD1-4. Henco,

it takes four memory accesses to load a word of memory for functionil memory

o

vl

(A}

m

R

. 90___, 2Lz

L

TFF

o \OT . -6 D4
ACFFA TFE
Loz _ LDAa

{

TBu

_
=

=

’

Figure A-8. FUNCTIONAL MEMORY CELL

vsj

I TLA

usnge@ Conversely, when the module is belhg used cunvehtiuna,ll_y, cuch word
line ttecesses four words of memory, The lowet Lwo bits of the address e then
used to gate the appropridte bit line into the program register.

D. The Inhibit Register

The inhibit register (shown in Figure A-9 is 4 16-bit register. For each
bit of this register that is get, the cérresp‘onding term lines are activated, Thig
effectively inhibitg this functional word from taking part in the functional search
cycle since the inverter (whidh will be discussed in the sedarch controls) outpt
is held inactive.

E. The Search Control and Selector Repister

In the search control (shown in Figure A-10), the 4 term lines are termi-
nated in inverters. The outputs of these inverters (together with the terms C2I,
C41, and C6l) then form the inputs to a combinatoridl network. The purpose of
this network is to form the terms C20 (meaning any two inputs active), C40 (any
four inputs active), and C60 (any six inputs active). These terms then become
the C2I, C4I, and CBI inpiits of the next word above this one in the memory array.
They are used primarily to generate a carry propagation term during the sedrch
phase of the functional memory cycle. The network of Figure A-9 implements
the followihg logical equations.

C20,= TL1 (TL2 +TL3 + TL4) + TL2 (TL3 + TL4) +TL3TL4 + C2I (TL1 +
TL2 + TL3) + C41

C40 = TL1- TL2TL3TL4 + C2ITL2TL3TL4 + CAITL1 (TL2 +TL3 + TL4) +
(C41 + C2ITL1) [TL3TL4 + TL2 (TL3 +'TL4)J +C6 (TL1+TL2 +
TL3 + TL4) -

C60 = COITL1 [TL3TL4 + TL2 (TL3 + '1‘1,4)] + COITL2TLITLA +
C4ITLITL2TL3TL4

The manner in which the 7 inputs (TL1—T14, C2I, C41, and C6l) are toti-

bined to heeome inputs to the selector ecll is controlled by the flip-flops BOCTHT1

weve | o TOATY
3 10 Tura® —_—1 o k3
o

[S H—
(4
(3
Ty
§

>
T N a
w o\ o] w o ofN\a CELS
¢9‘)a S . L) . - o 0O

L6

%

4

PP

Figure A-10. SEARCH CONTROL AND SELECTOR REGISTER CELL.

86

99

and EOCFTF2. If gate D1 is active, then C21 is gated into the exelusive OR, the
OR, and the AND ncetworks. If gate D2 is active then C2T and C4I are both sent

into theée networks. Finally, if gate D3 is active all 7 inpﬁts are sent into the

networks.

The selector cell (SEL) may be set by 1 of 3 gating networks. This is con-
trolled by the flip-flops SCFF1 and SCFF2. When gate S1 is active, then the
exclusive OR of term lines 1 through 4 and any combination of C2I, C4I, and Cé6I
as discussed above becomes the input. Similarily, gates S2 and S3 select the OR
input or the AND input respectively. In this manner, a good deal of power is
added to the functional memory search cycle in that combinations of terms both
from this word and prior words are allowed to select the outputs of this word.
This type of operation becomes very valuable in implementing iterative type
functions.

The 4 control flip-flops which difect the setting of the SEL flip-flop also
form the 21st cell of the functional memory array. These flip~flops are loaded
by signals LD121, LD221, LD321, and LD421. When this data is presented to
the cell and the proper clock signal (CLD1, CLK2, CLK3, or CLK4) is activated,
the selected flip-flop is loaded. Hence, with a sequence of four loads, the cell
is loaded. The clock signals are controlled by the address system described
later. These signals are activated by the LM signal. During a conventional read
operation, the data from this cell is read out on lines BL121, BL221, BL321, and
BL421. These lines are controlled by the word line WL,

Line WL is part of the addressing scheme of the memory array and is acti-
vated by the selector flip-flop (SEL). If SEL is sct and the control scction acti-
vates the READ line, then line WL will read this entire word of the memory,

The contents of SEL may. be read hy activating line RSEL. TFlip-flop SEL is set

during a functional cycle in the manner described above, provided that a READ is

100

not in progress and an address load (LSELT) is hot being done. The address
load is the other way that SEL can be loaded. The decoded value of the address
is input on line SD and the load signal LSELT is sent to gate the data into SEL,

F. Read Controls and Mask and Data Cells

The read controls and the mask and data registers (shown in Figure A-~11)
will be described next. Referring to Figtire A-8, the interconnections between
‘the read control énd the memory array appear on the left side 6f Figure A-11.
Recalling tﬁat LD1-LD4 and TD1-LD4 represent data to be loaded into the mem=
ory, it is seen that A1—A4 control which flip-flop is to be loaded. Al—A4 are
derived by decoding the 2 least significant bits of the address register as will be
shown In Figure A-14. The data inputs OR gate (DIO) is present because these
data can be loaded either from the data register or from the program register.
Input load memory program (LMP) represents data sent from the program reg- _
ister. Input LM is used to load the memory from the data register. However,
in this mode, only the lower 20 bits can be loaded.

During a search operation the input SCH will allow the true (TBL) and false
bit lihes (FBL) to be driven by the respective set and reset sides of the data cell
only if the mask cell ig set. In this manner, the functional inputs are gated into
the memory array.

During a read operation of a functional cycle, the 4 inputs from the mem-
ory array (BL1, BL2, BL3, and BL4) are gated into the exclusive OR network.
At this time, Al1—A4 will not be active and, thus, the reading OR gate (RO) will
accept data from 1 of 8 sources depending upon what'type of functional read cycle
is called for. In & read exclusive OR cycle (RDEOQ), the exclusive ORt output is
used; in a read true only cycle (RDTO), the true bit line (TBL) is used; and in a

read false only (RFO) cycle, the false bit line (FBL) is used.

an

Sy
dara
as I
A
| -]
[X3 !
1
Bae R
i v
i .
! P
I
Hol
1 -
= ! ;"’;L—:'——:ﬁ:i—j’,“’ oarany a v :t 1 sf\w
AN AR of P43 P >
v ;' .is Il i’u .
) > a
UCCC?) xoar - | "‘{))——-'t

Figure A-11. MASK AND DATA CELL

101

from the redding OR gite, the dott enters t‘lm reading AND gate (IRA).
t'rom there, duritig 4 functional eyele (FUN), if the mask bit is reset, the data
will be gated ifito the data register to form an outptt of the Booleait function pro-
grammed into the memory array.

During & conventional read cycle, one of the address lines Al«A4 will be
active in conjunction with the cotiventional signal, CONV. This will cause the
appropriate bit line to be sent through the other reading OR gate (RO1) afid out
through the memory data out (MDO) line to the program register.

The m4sk and data registers are loaded from the program register by
gating this register to the data-in and mask-in lines (IDAT), respectively, and
activating either the load data line (LDAT) or the load mask (LMASK) line,

Finally data can be read from the data register by activating the read data
line (RDR). This will send data to the output decoders to be transmitted onto the
bus line.

G. Input-output Gating Section

A typical cell of input and output gating subsystems is shown in Figures
A-12A and A-12B, respectively. The input decoder accepts data from the inter-
nal bus system (B1'—B20') and gates it to the selected cells of the data register
(DATA-IN), if the input mask register (IMSK) is set. This is done by decoding
the outputs of the five decoder flip-flops (ID1~IDS5) to form 20 enable terms which
select which bit of the input is to enter this data cell.

The input decoder is loaded from the program register by 1 of the 2 load
instructions, The mtefconnections between the decoder cclls and the program
register cells are shown in the chart on the figure. The inptit mask is loaded by
placing its input on IDAT and enabling signal LIM.

The output decoder is loaded the same way as the input decoder ind per-

forms a similar operation with the data. In this cuse, the data bit leaving the

Figure A-12A. INPUT GATING

eol

ln‘lf
>

[o¥

m—‘m g
nf=|w o <,
o =
a1
[
< 4
‘_ .
]
. 78
SN2 D
=T
w—
]
¢
L] _ .LO.U
Ly Ve L=
fic v
%n - e i A
o] et s
o 5 b
.a .._“ .W. v el
.] LR ss_ e
. . . [
. IRl
|
L o2

[—

3 a

I

yope Joblr

AR J

[T 2
. -
Y-

I.g
<
l‘v. (3
& l‘ L a
) 3
cd) t D
(Y T

.I Eﬁﬂ
RIARRI

|

|

1a% 2 3\-;:)5- g LIS
8 AY iu e \2_Jo

104

Figure A-12B. OUTPUT GATING

105

data register s gited to 1 of the 20 internal bus 1ines by the decoded value o‘f
flip-flops OD1—0D5.

By the use of these decode.rs', the contents of émy cell of the data register
can be sent out on any line of the external communications bus and, conversely,
any line of this bus can enter any cell of the data register. These operations are
very important for allowing the outpitts of one function to become the inputs of
the next one,

These 3 registers can be selectively cletired by activating the ODC, IDC,
or IMKC lines. The input and output decoders are loaded four cells at a time in
a sequence of ﬁvé loading operations. What is shown ih Figure A-12A is 4 table
indicating how these cells are loaded.

H. The Program Register

The main communications register of the module (shown in Figire A-13) is
the program register. The tipper 6 bits of thig 27-bit register form ah encoded
instruction set. Bits 22 and 23 are inptt to decoder number 1 whose output forms
the encoded contfol type selector. There are 3 types of instructions: a decoder
output of 1 selects the load group (T1), 2 selects the send-receive group (T2),
and 3 selects the clear group (13).

| Bits 24—27 are applied to decoder number 2 whose outputs, whet cotnbined
! with the outputs of decoder 1, form the instructioni set listed in Table A1,

The load group loads the specified register from the program register.
The input and output decoder are 5-bit quantities which are loaded 4 cells at 4
time from the lower 20 bits of the progtam reglster; in 5 words all 20 cells dre
loaded. The address register Is a 6-hit quantity loaded from bits 15=20 of the
program recgister. The 20-hit data register is loided from the lower 20 bits of
the program register as arc the D and I magks. ‘'The 16-bit inhibit replister {8

loaded from the lower 16 bitg of the progrum reglstet,

L2

. .
> 1 T otdn

Figure A-13. PROGRAM REGISTER (Sheet E of 4)

noi

it

-
“wre
ot
.
(T}
» uf\o_ e
3
.
w 1D L TOATY
k-]
- t
H
of P). e
L
- 1 .
-
@
I -3 L
-]
: 1)
. oy
e
™ jo 8 L] .
.
(3
) s .
w .) - . . c3
e X 129 -l s0et

Figure A-13. PROGRAM REGISTER (Sheet 2 of 4)

e

Figure A-13. PROGRAM REGISTER (Sheet 3 of 4)

501

LBgY
umPoy
Ling
ere
L33
) I‘ —y L LI LR 211
v e[\ e wmees -
=L Ad 2 }o
R_o woott]
"ot) L Lo
. " '
° ! A ronIL » 3N\e e
" packers L] 2 3N\e . e A Y .
) - 3
) L w -
et -
&g
I.s -

Figure A-13. PROGRAM REGISTER (Sheet 4 of 4)

60T

Table A-1. INSTRUCTION SET

110

coDE | LOAD GROUP (11) | STASICEVE CLEAR GROUP (13)
PO | Input Decoder W1 | Address Memory
P1 | Input Decoder W2 | D mask Input decoder
P2 | Input Decoder W3 | Data X Output decoder
P3 | Input Decoder W4 | Data I D mask
P4 | Input Decoder W6 |1 mask I mask
P5 | Output Decoder W1 | Inhibit Inhibit
P6 | Output Decoder W2 | Selector Address
P7 | Output Decoder W3 | Cycle Data
P8 | Output Decoder W4 | Input-~output decoder Load memory from data
P9 | Output Decoder W5 | Clear Load selector
P10 | Address Load address from data | Send ID
P11 | Data Transfer control
P12 | D mask Get otit bus 1
P13 | I mask Get out bus 2
P14 | Inhibit Get out bus 3
P15 | Memory Get out bus 4

A load memory command, when received by a module which is not in con-

trol, will load an address from bits 15—20 and will set the module flip-flop. The

module will then gate each load of the program register into successive memory

locations until the bus lihe is dropped. (Note the control state will be described

later.)

The clear group, when decoded from the program register, clears the

specified registers. However, the last 3 instructions in the group are not clear

commands. The load memory from data command contains an address in bits

15—20. This address is gated into the address register and the data register is

gated into the lower 20 cells of that memory word leaving the upper 7 bits un~-

changed. Since this instruction affects the address register, it is normally

111

accompanied by a stop command which is bit 21 sct. The output of program reg-
ister bit 21 is ANDed with RUN to form STOP, ‘This will reset the RUN flip-flop
which will inhibit the address register from stepping.
The load selector command will gate the lower 16 bits of .the program reg-
_ster (signal LSEL) into the selector register (sighals SEL16 to SEL1), Thig
command can be used to preset the selector register prior to doing 4 functional
‘read. Since the selector is also used in the addressing system this command
must contain a stop.

The send ID command alerts the bus system to connect other modiles to
this one. It can only be issued by a module that has control. In this command,
bit 20 signals the end of an ID sequence, bits 17—19 specify which 16-bit sector
is being addressed, and bits 1—16 represent a 16-bit sector specifying which of
16 modules i8 to be connected. In this manner, up to 128 modules can be simul-
taneously connected to a single module. After this command is executed, all daté
transferred over the bus will be sent to all connected modules. To change the
connect configuration, simply send another 1D command since this command se-
quence operates ih a clear-connect mode.

The send-receive group is very dependent upon the control flip-flop., If the
module has control then it is a transmitter and all the other modules connected |
to it are receivers. When one of these commands is received, it is decoded and
the indicated action Is taken. All of the transfers except the data transfers are
from the program register to the program register.

The receive address command causes signal LDA to be activated which
gates bits 20 through 15 t'o the address register through gates AD1—ADG. 'The
receive D register command activates signal G5 which gites program register
bits 1 through 20 out of the gates IDAT1—~IDAT20, It also Activates the load

mask (LMASK) line to gate these hits into the data mask.

R B

The datn X and data T commands are used to send daty botween modules,
Fur thesoe comintids, the tpper 6 bits of thie progrant register ufe sent by sig-
nal XMPGUD ulong with the 20 data bits sent by RDR. For the recelving module
‘the program register bits nre decoded tnd & LDAT signal is gei;ertited to plade
the data in the data register going through the Input decoder and itput mask,

In the transmitting module 4 data I commund will nlso d'atise 4 LDAT slg-
nal, This will feed the data bits back Into the date register through the 1nput de-
coder, In this manner 4 shifting operation cun be performed,

The recelve inhibit und 1 mask roglater vommands bﬁerate it the same
matner as the receive D magk register command, except in theée cused the load
| sighals activated at L and LIM, respectively,

'The transmit selector command 18 used when & futiction has too maty inputs
#nd outputs to fit withih one module, 1 this ense the modﬁle gontaining the inputs
does 4 functional search and then transmité the resulting selector to the module
‘containing the outputs which then does a tead cycle. The mantier in which this is
necomplished s that control will reside with the outputs module. This moduile
will send & search eycle command to the input thodule and then it will send the
transmit selector command and wait. The tnput modile will conmplete the eearch _
gycle and then decode the program registers This will Activate a read selector
(RSEL) which will pute the selector register into the lower 18 bits of the program
register. Then u transmit program tegister (SMPQ) I8 igsted to send the selec=
tor back to the output module, When the output module recelves 'this information,
it the generates a load selector (LSEL) signal to gat‘e the lower 16 bits of the
program register into the selector. 1t then geherates u functional (FUN) teud
(RDEO), RDTO, or RDFO necording to ils configuration. After the road eyele 18

completed the hext tnstriction is read from the address in the address rcgister.

113

The receive cycle command specifies the cycle type and the read type to

be executed. The decoded command will activate either a functional operation

(FUN), or a conventional operation (CONV). Program register bits 18 and 19

specify the read types as:

CONV

'Bit 18 Bit 19
0 0
1 0
0 1

Type

run
read

write

Bit 18

(=T

1

FUN

Bit 19

0
1
1

Program register bits 16 and 17 specify the cycle type as:

0
1
0
1

Bit 16

- -0 O

Bit 17

Type

Type
Read false only

Read true only
Read exclusive OR

Conventional

Search only

Read only

Search-read

Bit 20 specifies whether or not the transmitting module is to cycle (SLF2). The

module will then execute a cycle.

The receive input-output decoder command will load either the input or

output decoder as specified by bit 20 (I/0) in groups of 3 cells at a time (as spéc—

ified by bits 16—18) from the program register bits 1—15. In this command, bit »

19 specifies whether the transmitting module is also to load its own decoders or

nbt (LDWN). The cells to be loaded are Specified as:

Bit 16

H O N O e O

O O O o O

Bit 17

R o T R R o B < S -

Bit 18

Cells

’ ’

1, 2
4, 5,
7, 8

o o W

9 s

10, 11, 12
13, 14, 15
16, 17, 18
19, 20

GL1
GL2
GL3
GlL4
GL1
G1.2
GL3

114

+

In the receive clear commind, the lower 8 bits of the progam reglgter

specify which registers are to be cleared. This is specified by

Bit Register Bignal
1 All MC2
2 Input decoder IDC2
3 Output decoder OoDC2
4 Data mask MSKC2
b Input mask ‘ IMKC2
8 Inhibit IHC2
7 Address ADC2
8 Data DC2
9 Clear your own SFC

In this command, the transmitting module can also clear its own registers
by setting bit 9.

The load address from data command is not a transmitted commahnd. It is
used to transfer a computed address from the datd register bits 15—20 to the
address register. Bit 20 specifies whether a4 4- or 6-bit address is to be lotded
(DADS). |

The transfer control command is used to transfer control to another mod-
ule and clear the bus system. Bits 15—20 are the address to which control is to
be transferred. Bit 13 specifies whether or not the address is to be loaded
(NLAC). Bit 14 specifies whether or not control is to be retained by the trans-
mitting module (SPTC). This is used to split the co.ntro‘l into 2 or more inde-
pendent operations to be done simultaneously. A control sequence may be ter-
minated by transmitting control to a bus line which has no modules connected to

it with bit 14 reset since this action will resect the control flip-flop.

Bits 1 and 2 spccify the cycle type, 3 and 4 specify the read type, and 5
specifies self-cycle in the same manner as bits 16—20 did in the transmit cycle
command.

The last 4 get-bus commands are used to access 1 of the 4 major bus sys-
tems for the purpose of transferring data and control to the various functional
areas in the system. A functional area is a set of up to 128 modules connected
to a minor bus system és discussed in the above presentation. These modules
are programmed into distinct functions such é.s CPU's, fast Fourier transform,
etc. Hence, data can be separately sent to these functional areas and they' can
be simultaneously activated. In this manner, the system can become as parallel
as the problem being solved dictates.

I. The Address Register

The address register shown in Figure A-14 is a 6-bit counter capable of
being loaded either from the program register (AD1—AD6) or from the data reg-
ister (ADD1—-ADD6). The data register can load either a full 6-bit address (line
DADG6 active) or a 4-bit address leaving the lower 2 bits zero since all loading
operations are part of a clear (CLR) load sequence (CLK).

Once loaded, the LSELA signal gates the address into 2 decoders. The
output of decoder 2 (SD0—SD15) is gated into the selector register. The outpﬁt of
decoder 1 is sent to the read control Al—A4. In this manner, when the module
is used conventionally, full addressing of all cells is achieved.

After reading the selected address, a step signal (STPD) is issued. This
causes the address register to count up by one and, thué, prepares the module to
read the next word of memory. If the current instruction contains a STOP, this
will be the next address read when a run is issued, unless the address register

is reloaded.

Figure A-14. ADDRESS REGISTER

T

o1

117

J. The Mcmoz;y Control

The memory control section generates all the necessary control sequences
for the module. Since a large number of signals are generated, this section is
" presented in several parts. Many of the signals generated here are used in exe-
cuting the various microinstructions of the module. Figure A-15 shows the com-
munications controls, Figure A-16 shows the 1/0 decoder controls, -and Figure
A-17 shows the clear controls and the internal module controls.

The communications controls (Figure A-15) generate all the necessary
control signals for the tra.nsrr;ission and reception of module-to module data.
The send/receive group of commands are detected by signal T2. This group is
activated if the memory is not being' loaded at this time (LMPG). Under this
group (refer to polumn 2 of Table A-1), the load address instruction is detected
by signal P0. If at this time the module is in control (CONT), then the instruc-
tion is to be transmitted and the transmit program register (XMPGQG) signal is
activated. All the other instructions of this group act in the same manner when
the module is in control. I the module is not in control, this implies that the
load address instruction has been received. In this case, the signal PO is gated
with the appropriate timing control (T) to form the load address signal (LDA).

When a load data mask instruction (Pl)is received (Féﬁ), it generates a
load mask signal (LMASK) and a send mask data signal (G5). Signal G5 is used
to gate data from the program register onto the internal bus which connects t6
all the other registers of the module. Thus, by activating this signal along with
the proper load signal, data is transferred from the program register to the reg-
ister to be loaded. Thus, the reception of a load input mask instruction (P4) and
load inhibit (P5) generate signal G5 and the respective load signals LIM and LI.

The above signals arc also generated when the load group is detected (T1')

and the appropriate load instructions arc decoded: P12 for the data mask, P13

.uv.

D

v.HU .

YYYS S =

<

e

3
-
)
[

¥ YN Y

'%5“
T,
&

&_Z,

4. 1S
. -~
h
(3
- e fm
iu
&l 0 B

-
- L eBRL) a LR
- | i

-
el
= oy

™ e

LK)

1ig

Figure A-15. COMMUNICATIONS CONTROLS

119

for the input mask, and P14 for the inhibit register. TFurther, under this group,
a load data instruction (P11) gencrates a G5 and the load data register signal
LDAT.

The LDAT signal is also generated by the send/receive group data X in-
struction (P2) and data I instruction (P3). The difference between these two
instructions is that the data I instruction, in addition to transmitting the data
to another module with the XMPG signal, can read the data register (RDR) and
load it (LDAT) without regard to the control state. The data X instruction can
only read data (RDR) if the module is in control and can only load data (LDAT) if
the module is not in control.

The send/receive clear (P9), cycle (P7), and load I/0O decoder (P8) in-
structions generate gating signals (TMC1 for clear, TMCYC1 for cycle, and
TMIOD1 for I/0O decoder) for the program register. These signals are present
because a module may act upon itself in these cases as well as transmit action to
another module. These signals gate the various fields of the above named in-
structions from the program register into the control unit. In the clear instruc-
tion, if the module is not in contrql, TMC is generated. If the module is in con-
trol, SFC is gated from the program register to produce signal SMC. As will be
seeﬁ when the clear controls are discussed, either signal, TMC or SMC, can

‘activate the clear signals. In the cycle instruction, if the module is not in con-
trol, TMCYC is generated. If the module is in control, SLF2 is gated from the
program register to produce SCYC. Either signal, TMCYC or SCYC, can acti-
vate the cycle controls as will be seen in the internal control section. In the I/0
decoder instruction, if the module is not in control, a load instruction has bheen
rcceived and TMIOD is activated. If this instruction is being sent and signal
LDWN is gated back from the program register, then LODDC is generated to

load the decoders. _ | C

120

The gend/receive selector instriiction (P6) I8 the most vomplex instuction
and i8 used in cases where 2 [unction is tuo litige to fit in one mbdule, The lh~
struction is designed to be used after a functional-search-only eycle, it I8 gent
" to the module which just completed the search. It reads the selector froi that
module and sends it back to the requesting module. This module then lotds its
own selector and does a functional read , thereby, completing the futictiondl eyele.
" This instruction, when received by a module not in control, generdtes # redd
selector signal (RSEL). Then, after the selector has been read at time T, 4
transmit register (XMPQ) is generated.

For the module in control,- there is a slight problem, since whei thig in~
struction is first read, it must generate & XMPG, bﬁt when it is recelved back it
must generate a load selector (LSELT). This problem is solved by the flip-flop
SCFF. When the ifistruction is first read, this flip-flop is reset and a XMPQG is
generated. After a time delay to allow thé transmission to take place, SCFF is
set. Then, when the data is received from the search module, a load selector
(LSELT) is generated and SCFF is reset. Also a functional read cycle i§ initiated
(FMRDC).

In the load group (T1), the load address instruction (P10) is gated to gen-
erate an LDA signal. The load memory instruction (P15) also generates an LDA
signal if the module is not in control, This instruction also sets the load memory
flip-flop. This flip~-flop inhibits any instructions from being decoded and #llows
an external signal EST to gate data into the memory via signal LMPGT. This
signal will gate the program register into the meméry and step the address.

There are two instructions which allow data to be placed in module registers.
The load memory from data (P8 and T3) generates an LDA signal to load the de-

sired address and an LM signal to gate the data register into the lower twenty

ccl.ls of the memory word. The load address from the data instruction (T2 and
P10) gencrates signal LA which gates bits 15 to 20 of the data register into the
addrcss register.

The transfer control instruction (T2 and P11) is used to generate control
sequences. This instruction generates signal TC1 to gate the instruction fields
from the program register to the control unit. If the module is in control, sig-
nal TC is generated to clear the control flip-flop. If the module is not in control
and an address load is requested (NLA), then an LDA will be generated.

The instruction set allows for 5 communications bus systems to be imple~
mented. These instructions are: send ID (T3 and P10), get bus 1 (T2 aﬁd P12),
get bus 2 (T2 and P13), get bus 3 (T2 and P14, and get bus 4 (T2 and P15).
These instructions generate a transmit program register (XMPG). This data is
decoded by the various bus systems and decoded in order to form a data path be-
tween a module in control and several other modules.

The input/output decoder controls (Figure A-16) generate the signals which
are used to load the input and output decoders. Those froem the load group T1
(load input decoder words P0—P4 and loaci output decoder words P5—P9) and one
instruction from send/receive group T2 (load input-output decoder P8) form the
inputs to this section.

In the send-receive group, if this module is not in control (CONT), signal
TMIOD is generated and, if it is in control and a self load is requested, the
LODDC is generated. Then, as can be secn in Figure A-13 (the program regis-
ter), these signals cauSe.I/O and IDW1-3 to be sent to the control unit. As can
be seen in Figure A-16, these signals arc uscd to enable the decoders and gate
6ut the proper load.sig'nals. Since the decoders have 20 5-bit wide cells and
since the program register has 20 bits available for communications, 2 signals

(GL1 and G6) arc required to gate the data from the program register to the

¢Q:§]

]

|

ihakh ik

€

1 .
—N\» Nz csew
b2

’D;_.f-a-"
1]

D) .,>a_____==.._

-™ a iCTase
)

,_;i). e-.’\- e

2pe e

=
w Nz weaaaz
.,_‘J 1
z

DD

i
!‘)'a B2 ba

%.

N

T"_

LN

'
v

~ "

Figure A-16. 1/0 DECODER CONTROLS

&3
(R4

decoder. This is because, in transmission of the decoder values from one mod-
ulc to another, the upper 5 bits are nceded to contain other information. Hencee,
depending on which instruction is issued, the decoders are loaded either 3 or 4
cells at a time. Hence, G6 is required to gate the 4-cell case and GL1 is used to
gate the 3-cell case.

The LIDW (load input decoder word) and LODW (load output decoder word)
signals control this process. The signal names are coded to indicate what cells

they load. The codes are:.

Signal Cells Loaded
w14 1to4
Wiz ' 1to 3
W46 ' 4to6
W58 ' 5to 8
w79 7to9
w912 9 to 12
w1012 10 to 12
w1316 " 13to 16
w1315 13 to 15
w1618 16 to 18
w1720 17 to 20
w1920 19 to 20

Figure A-17 shows the clear controls. These controls can be activated by
the clear group. ‘The first 8 instructions of this group will clear the memory
(P0), input decoder (P1), output decoder (P2), data mask (P3), input mask (P4),
inhibit register (P5), address register (PG), and data register (P7), if the module
is not being loaded. The memory clear is used as a master clear instruction,
Another way to activate these controls by a module not in control is to apply a
transmit clear instruction (TMC). TIurther, a module in control and sending a
TMC instruction can also activate these controls by rcqucsting a sclf clear (SMC).

These last 2 methods of clearing the register specify what register Lo clear by

Figure A~17. CLEAR AND INTERNAL MODE CONTROLS

(X

using bits 1 through 8 of the program register, which arc gated into the controls
as signals MC2, IDC2, ODC2, MSKC2, IMKC2, IIIC2, ADC2, and DC2, respec-
tively.

As mentioned previously, there are 2 types of cycles that this module can
perform, a functional cycle and conventional one. There are 2 instructions that
can activate a cycle, the transfer control instruction (TC) and the cycle instruc-
tion (TMCYC), and each of these can activate a self cycle (SLF1 and SCYC). A
" cycle instruction has 2 types of fields, the cycle type and the read type. The
cycle type can be a conventional cycle (decoded value 0), a functional-search-
only (decoded value 1), a functioﬁal-read-only (decoded value 2), or a full func-
tional cycle (decoded value 3). In a full functional cycle, three timing values are
required. Attime TIA, a funotional search is performed. Then at time TIB, a
functional read is performed. At time TIC, several actions occur. The con-
ventional signal is set to enable the module to read microinstructions. Also, if
a transfer of control instruction is present, the control and run states are set.
The conventional signal is also set by the conventional cycle type.

There are several types of reading operations that the module can perform.
During a functional read, the read can be done using the true-bit-line-only
(RD;I‘O), the false-bit-line~only (RDFO), or as the exclusive OR of the two
(RDEO). These signals can be selected by decoding the read type where 1 means
read true only, 2 means read exclusive OR, and 3 means read false only. Fur-
ther, a transmit selector can also activate these read types by using the program
register bits 18, 19, and 20 for RDTO, RDIO and RDEO, rcspectively.

During a conventional cycle, reading type 1 writes the contents of the data
register into a specified memory address (WT). Reading type 2 will read the
lower 20 bits of a specificd memory location (RD) into the data register. Read-

ing type 0 is a normal cycle instruction and will sct the RUN flip-flop which will

128

start the module reading and exceuting microcode. This RUN [lip-flop eat be
resct either by a stop bit or by o master clear. |

The control flip-flop can be set by 4 receive control instruction '('I‘Cl) or
by a x;etain control signal (SPTC). It is reset if control is being transfeired (TC)
and not retained (SPTC).

The external pin assignments for this module are:

Pin Function
1-27 1I/0
28 Connect (CON)
29 External data request (EXT)
30 Data received reply (RCD)
31 Module busy
32 General bus request
33 Bus 1 request
34 Bus 2 request
35 Bus 3 request
36 Bus 4 request
37 Power
38 Ground

The connect signal (CON) is used to connect a module to the requesting bus
system. Once connected, a busy signal is sent to the other bus systems, inhibit-
ing any further connect requests. The external data request (EXT) is used to gste
data from the bus into the program register. The data received reply (RCD) is
used to acknowledge the receipt of data. The five bus requests dare used by 4
module in control to gain access to a communications bus.

The bus systems are used to connect modules together and to coordinate
replies froth the connected modules to the control module. In this mannet; the
replics from the connected modules to a data transmission are grouped together to
form d single reply to the transmitting module. Hence, timing conflicts are re- |

£y

golved within the bus system.

APPENDIX B

This appendix describes, in a formal manner, the telemetry preprocessing
language developed in this thesis. The language (reference 12) by which the te-
lemetry preprocessing language is being described is termed a metalanguage and
is uniquely distinguishable from the preprocessing language. To formalize the
definitions in the metalanguage, each definition is given the form of a statement
or construct, which is analogous to a formula. However, to accomplish some
unique features of such a specification, the operators define a mode of construc-

tion, or concatenation. In this text we shall employ the following symbols in the

metalanguage:
<X> the variable name x
RS can be formed from
| or
{z }j z is to be repeated at least i times but not more than j times.

When i is omitted, its value is assumed to be 1, and when j is
absent, its value is assumed to be infinity.

The format of a metalanguage construct will be as follows. The variable
named in the corner braces may be formed from the variables named or specified
on the right. This definition specifically avoids any reference to concatenation on
the right-hand side of the construct, since not all constructs contain the operation
of concatenation, and where desired, the concatenation operator is specified. In

fact, concatenation is implied by the juxtapds'iti-bn of names or objects in the

construct. Thus the metalanguage construct A <x > ; is intended to symbolize
the linear concatcnation of the object A, the variable named x, and a semicolon.
Another example of this concept is the following metalanguage statement:

<object>: : = <part 1>| A'<part 2>

127

128

This statement reads as follows: "the variable object cin be formed from
the variable ptrt 1 or from A and upostrophe and the variable part 2 in that order
of occurrence, '

| Throughout the text, variables will be defined in their order of vecurrence
in the definition statement; i,e: in the above example, part 1 would be defined
first followed by part 2. Then, any new variables cgeatéd ih these definitions
would be defined in their order of occurrence, This ordering of definitions will
be followed tinless written text intervenes.

The definition of the telemetry language begins with the definition of the
chardcter set used in the language.

<olement>: t = <letters | <digit > | <special character s

<letter>4 1 = AIBICIDIE| FIGIHITIISIKILIMINIOIPIQIRISITIUIVIWIXIYIZ

<digit st : =<binary digit > | <octal diglt> | «decimal digits

< special character >t ¢ =<arithmetic operator> /1 (1)1, 1.1 =

| ¢ blank >

<bindry digitst ¢ = 0|1

<octal digit>: 1 = 011121314151617

<decimal digit>s ¢ = 011(213141516171819

<arithimetic operator>: : = <additive arithmetic operator >|* | +

<blank >} 3 = <the absence of <letter > | < digit> | <special character s>

< additive arithmetic operator>: ¢ =+«

Thus, it is seett that the elements of the telemetry language consist of ail
the capital letters, the digits 0 to 9, and the listed special characters. Further,
the binary digits 0 and 1 and the octal digits 0 to 7 have beet defined separitely
from the decimal digits and can now be used to define other variables, The

arithmetic operators have also been separately defined within the specidl

129

character sct, and the additive arithmetic operators have been further separated
from them,

Having defined the basic elements of the language, these elements may be
used to form variables in the telemetry language in the following way:

<variable> :: = <name> | <decimal number>

n<9
<name>: : = { < letter> | <name > <letter > | <name> <digit>}
9-n : Y
{<blank >}
9-n
4

<decimal number>: : = { <digit > | <decimal number > <digit>}
. 1

A variable in the telemetfy language can be either a name or a decimal
number; but, as is shown, limits exist oh the size of either. A decimal number
must range from 0 to 9999, and a name may not have more than 9 allowable
elements in it. Note that a name when not blank must begin with a letter but
may then contain a sequence of letters and digits; e.g. L101A, B47, ABLE, etc.

The general structure of the telemetry language is:

<telemetry language>: : = <valid expression > FINIS

<valid expression>: : =< format definition> | < frame definition >

< format definition>: : =< format identifier > < format specifiers> END

< frame definition > : : = < frame identifier> <'instructions> END

Hence, the-languége has two major divisions: the format definition and
the frame definition. Each of these divisions terminates with the word END and
the language specification terminates with the word FINIS. Before the word
FINIS is encountered, however, every format identifier must be matched by an
equivalent frame identifier; otherwise, an improper specification has occurred.

Now the elements of the format definition will be described.

< format identifier> : : = <name> FORMAT

130

L 3
< format specifiers » 1 ¢ = { ¢ ecessary format specifier > }
: 3
3
{ ¢ optibnal format specifier s }
0

< necessity format speclficrs t 1= <sync code> | <word Bizes |
< frame sizds |
<optional format specifier> it = <bit rate> | < modulation code > |
£ tape speed >
<syne codes ¢ ¢ = FSP <number>
<word sizes tt = BITS/WORD < number >
< frame size> ¢ ¢ =WORDS/FRAM <tuumbers
<bitrates ! =BIT RATE <ntmber>
< moedulation code > ¢ : = CODE < code type>
< tape speed > i ¢ = TAPE SPEED < speed factor >
<oumber > : : = <decimal number> | <octal humber > |
< binary number > | ¢ binary number > < octdl humber > |
<octdl number > < binary number >
<code type> 1 ¢ = SPPH|BIPHIRZ|NRZ|NRZM|NRZL|NRZC
<speed factor > : : =120160130115171/2133/4117/8
<octal number > : : = 0 < octal digit > | <octal number > <octal digit>
<binary number> ::= (< binary digit > | < binary number >
<binary digit >) |
All of the necessary format specifiers must be present in the fortat
specification; otherwise, the format épecification is invalid. The only param-
eter representation restfiction is that the binary equivalent of the F8P param-

eter must be the cxact frame syne code including all leading zeroes.

131

The frame definition division of the telemetry language will be described

next. Recalling the syntax of the frame definition:

< frame definition > : : = < frame identifier > < instructions> END

< frame identificr> : : = < name> FRAME
<instructions> :: = < specifier> | <control instruction> | <data
handling instruction >
All instructions are prefixed with a 9-element location field which is de-
fined as:
< location symbol > : : = <simple location symbol > | < indexed location
symbol >
< simple location symbol> : : = <name> | <blank>
< indexed locatioﬁ symbol> ::= < name> (<simple arithmetic
expression>)
<simple arithmetic expression> :: = < variable> | <variable >
< arithmetic operator > < variable>
Recalling the definition of name, it is seen that there is a restriction on
the location field; if the location symbol is less than nine elements, it must be
left justified in a blank field.
A specifier is defined as:
< specifier > : : = CONTINUEIDIMENSION <decimal number >
At this poinﬁ, it should be noted that an assumption is being made concern-
ing the memory space of the teleinetry language. The assumption is that this
memory space consists of two distinct and completely independent sections: the
program memory and the data memory.
The only location symbol capable of addressing the program memory is the

location field of a CONTINUE statement or those names which match the location

132

symbol of 2 CONTINUE statcment, All other location symbols address the data
memory.

Furthermore, all datda memory refercnces must be sized with a DIMEN-
SION statcment. As examples, consider the address of PL1 of the program
memory and the array ELMT of the data memory. Address PL1 is defined by:

PL1 CONTINUE

Since instructions are sequentially addressed as they appear in the frame
definition division of the telemetry language, the above instruction will have the
effect of assigning to the symbol PL1 the next available address in the program
memory.

Array ELMT is defined by:

ELMT DIMENSION 200

Since DIMENSION statements are similarily processed for the data
memory, this statement will have the effect of assigning the next available 200
addresses of the data memory to the array ELMT.

Control instructions are those instructions used to alter the sequence in
which instructions are executed, specify parameters, or form similar frame
definitions., These instructions are defined by:

< control {nstructiod> :: = < go to expression> | <repeat

expressiofi> | < equate expression > | <index expression> | <if
expression >

< go to expression> ¢ : =GO TO <name>

<repeat expression> :: =REPEAT <variable> , <name> =
<simple arithmetic expression> , <simple arithmetic expression >
<equate expression> :t = EQUATE <name>

<index expression> :: = <name> =<arithmetic expression>

<if cxpression> :: =IF (< logical expression>) <name >

133

The GO TO, REPEAT, and 1T instructions must have nuall Jocation ficlds.
‘The names in the GO TO and 110 instructiors must appear as a location ck[)x'c:%--
sion of a CONTINUE statement, The GO TO instruction is an unconditional
branch o the specificd location. The IF instruction is a condilional branch in-
struction. If the logical expression (to be defined) is truce, then the branch to
the specificd location is excculed; otherwise execution conlinues with the next
instruction. |

The REPEATT instruction is used to perform a looping operation. The loop
index is specificd by name. The initial valuc of the index is the value of the first
simple arithmetic expression. The final value which will cause the lo.op to be
exited is the value of the second simple arithmetic expressién. Thé length of
the loop is specified by the vah'ze of the variable. Two important restrictions
must be remembered: 1) If the variable is liot a decimal number, it must be
the name of a previously defined index, 2) The loop index may be altered within
the loop but care must be taken Lo insure that equality will result at the end of
loop test.

The EQUATRE statement must have a name in the location field, This name
must match the name of a frame identifier. This statement is used tc define a
frame which is simply the reverse of another defined frame; a condition com-
monly prevalent when spacecraft recorders are used.

The index definition instruction may .have a location symbol. If it doecs,
the value of the index as computed by the definition of that index will be placed in -

the specificd data memory location.

134

Now the arithmetic and logical expressions will be defined.
< arithmetic expression> ¢ 3 = <signed varidgble > | < signed varible s
< urithmetic operator > | <arithmetic expression >
< variable> | <arithmetic expression> <arithmetie
operator> | (< arithmetic expression >) <arithmetic
operator> <varisble> | <arithmetic expressioi> (¢ arithmetie
expression>) | (<arithmetic expressions)
<signed variable> :: = <additive arithmetic operator >
<vdriable > | <variable>
< logical expression> ! : = < simple logical expression > | < logical
expression> < logical operators> < simple IOgicél expression >
<simple logical expression> ¢ = <loglcal operand> < logical
operators <logical operdhd s
<logical operator> : ¢ =+ <logical relator>
<logieal operand > ! ¢ = < unatry operators <operands
<logical relator> t t = AND|ORILE|LT|EQINEIGE|GT
<unary operator > ¢ ¢ = iNOT. | <blanks
<opefand> 1t = <variable> | <arithmetic expressions | < logieal
expression >
Notice that in both arithmetic and logical expressions, any level of pa-
rentheses are allowed. However, one important rule of operation must be
remembered, the order of evaluation {s left'to right with no precedence among
the operators. Also in logical operations, the unary operator NOT medns
compliment the operand to its right. If that operand is a; variable, the value of

that varigable will be complimented prior to comparisot.

135

In using the logical rclator AND, if the two opcerands are of unequal bit
length, leading zcrocs will be added to the shorter of the two to make them
equal and then the operation will be donce.

The data handling instructions will be described next.

<data handling instruction> : : = <location name operation > |

<word instruction> | <sync instruction> | <sub instruction>
<location name operation> :: = <name> <parameter set> | <location
name operation > < linkage>

<word instruction > : : = WORD < parameter set > | <word

instruction> <linkage >

<sync instruction> :: = SYNC <parameter set> | <sync

instructionﬁ <linkage>

<sub instruction> :: =.SUB, <count mode >, <variable> <parameter

set> | <sub instruction> <linkage>

<parameter set> :: = <modifiers> | <modifiers > (< word

cqntrol>) | (<word control>) |

< linkage> :: = <additive arithmetic operation >

<count mode > : : = B|F

<modifiers> :: = <modifier > | <modifiers>, <modifier>

<word control> .: : = <simple arithmetic expression> | <simple

arithxﬁetic expression>,<simple arithmetic expression > ,
<simple arithmetic éxpression >

<modifier> :: =L|PET|PEA|POT|POA

In the location name operation, the name must be a defined data memory
address. Hence, the parameter set will operate on the data memory locations
specified by name; whereas in the other data handling, the operations are per-

formed on the input data set.

134

In all of these instructions, the location field specifivs a data memoty
address in which the defined datd value will be placed. The combinatioi of the
parameter sct and the linkage define the data value. The linkage symbols are
fully distinguished from their arithmetic counterparts by their location in the
instruction stream a8 shown in the above syntix,

The plus linkage implies that the bits specified by the instruction imme=
diately following will be appended to the right of the bits already extracted. The
minus linkage implies that the compliment of those bits will be appended. In
this manner a new data value is formed from the input bit stream.,

The bits to be manipulated in the above manner are specified by the param-
eter set, The word control specifies the bit locations and the modifier L speci-~
fies their end for end reversal. If the word control is a single parameter, the
value of that parameter specifies the word of the designated bit stream to be
manipulated. If the word control is a three parameter set, the first parameter
Bpecifies the word, the second specifies the starting bit, and the third the
number of bits to take from that word. It is these bits which will then be mani-
pulated.

Words and word sizes of the input data stredm die specified in the ass0-
ciated format division of the telemetry language.

The modifiers PET, PEA, POT, and POA spetify that the associated data
value is to be checked for a parity error. The parity bit to be used for com=
parison is the bit specified by the word control section of the instruction con-
taining one of these modifiers. The data value to be checked is specified by
those instructions that are linked to this instruction. The type of check to be
performed is specified by E for even parity or O for odd parity. The time that
the check is to be performed is specified by T for before manipulation or A for

after manipulation. The tesult of the parity check is to set the sign bit of the

137

specificd data memory word to 1 if a parity error is détectcd and to 0 if not.

The location name operation and the word instruction operate as described above.
The other two instructions perform special operations. The sub instruction is
designed to check a data counter. In this instruction, the count mode specifics
forward or backward counting and the variable is the counter modulus. In addi-
tion to forming the data value as described above, the sign bit of this data word is
altered. This bit has a value of 1 until the three previous values of this data
word represent continuous counts. It then remains 0 until three consecutive
counts occur out of sequence, at which time a new counting sequence will be
searched for.

The sync instruction does not place the frame sync code in thé data mem-
ory, instead it retrieves the frame sync code from the format word and com-
pares it with the data value bit by bit. It the»n replaces this data value in the
data memory by a set of words representing: 1) the total number of errors in
the frame sync pattern, 2) the number of pattern ONEs in error, and 3) the log-
ical product of the pattern and the received frame sync code.

Comments in the lapguage , when punched on an 80 column card, can be
entered either with an asterisk (*) in column 1 or after a blank at the end of av
language statement. Comments may appear anywhere within the telemetry
language. The syntax of comment statements is:

<comment > : : = * <textual streaxi1> | <blank> <textual stream>

< textual stream> :: = <element> | <textual stream > <e1emenf>

A final note on card formats , if the linked data handling instructions or an

index definition statemeﬁt forms a character string too long to fit on one card,

an asterisk (*) in column 80 signifies that the entire next card is a continuation

138

card. As many eohtinutition cards 48 needed may be used, However, on 4 con-
tinuation card an * id column 1 does not signify & comment card, 1In this case

the * s interpreted a8 an operttor,

APPENDIX C

This appendix describes the APL programs and subroutines which com-
prisc the compiler of the telemelry preprocessing language. In order to read
and understand this appendix, the reader must have a working knowledge of the
APL programming language (references 10 and 11).

This compiler is divided into two major segments, the frame segment and
the format segment, as was described in Chapter 2. Compilation begins with the
execution of the routine COMPILE. This routine initializes all of the tables re-
quired during compilation and reads the first statement of the language. The
routine can recognize four statements. If the statement read is an EQUATE
statement, the necessary linkages between the new and old frame identifiers are
formed. If the statement read is a FINIS statement, the routine is exited with all
of the tables properly loaded. If the statement read is a FRAME statement, the
frame parser is entered. If the statement read is a FORMAT statement, the
FORMAT parser is entered. Any other statement read by this routine generates
an error message.

The FORMAT subroutine checks the name of the format identifiex_' with the
format table to insure that there are no multiple entries. If there are, an error
message is generated and the subroutine is exited. Otherwise, the statements of
the format section are read and the format'table is filled.

The FRAMES subroutine checks the name of the frame identifier with the
frame table to insure that there are no multiple entries. If there are, an error
message is generated and.the routine is exited. Otherwise, statements of the
frame section are read and the operations table is formed.

The routine INPUT reads statements of the preprocessing language, ignores

comment cards, and deals with continuation cards.

139

140

The routine CDAD comiputes the address of 41l symbols for both the pro-
grtm and data memory and agsipns ifidices to thoge symbols which refer to index
cotfitors, These assigned values are placed in the operations table along with 4
code deslgnating the type of variable represented. |

'The routlne DECODE transforms the frame sync pattert into a bit string
with the pattern right justified: 1t also determines how many bits are i the pat-
tern and loads this value into the format table,

The routine ERROR generdtes all of the error messages that the compiler
produces.

The routine ENTR places variable names into the symbol tabie, checks for
multiple definitions, and generates appropritte error messages wheh trequired.

The routine LFORM parses simple arithmetic expressions.

The routine LIDEL recognizes and stores numbers, detects simple arith«
metic expressions, and sehds them to the routine LFORM,

The routine MEMP provides a compiled listing of the program. It lists all
symbols used together with their addresses and provides a f&rmatted output of
the opetrations table.

The routine OPRA parses expression of the form M(A, B, C). Such ex~
pressions are fourid in the specifier protion of the data handling instructions,

'The routihe OUTERR lists ull the compilation errors that the routine
ERROR stores ii the error table.

The routine PARSE translates the arithmetic and logical expressions of the
preprocessing language into Pollsh string format and places these operators ihto
the opetations table.

The routihe RESCD minages the internal temporary storage locations,

agsigns them s required, and reclaims them for reassignment,

141

The routine TRANS translates the three number systems of the telemetry
preprocessing system (decimal, octal, and binary) into the decimal number éys-
tem and places them in their assigned storage locations,

The routines just described comprise the compiler for the telemetry pre-

processing language. The APL program listings for these routines follow.

142

veouprrnELly
\ conrrzr LOCyPPYCLTHMAD ADMAD s PRAD s PREO™ FRPT;FOPT sOP

(13 THAD«DMAD<1 40, (PRAD+1), pP7n+an+ 1 0 p'

{21 FP+AHP«AH+PT+P01HID«0T FRPT<«FOPT+1 0

{31 1L0:OP+30494C«INPUYT

(4] +10xp(C+194C) , LOC+((Q=pLOC)p" V), LOC+(LNC=Y Y)Y /LnC«34C
{51 A«CAN/VFRAMEY =540P) y(A/ " PTNIS =540P) , A/ FOUATE =6 40P

61 +(0P=0)/0P+(L1, 12, La LY x (A FORMAT = :640P) 4

[71 +5Lo,pl«'NOT A LEGAL QTAwrﬂﬂvm ces RETRY?

[8] L1:0T+FOEHAT.OT

(a9l +L0, (THAD«IMAD+11) ,FOPT«IHAD FOPT

[10] n2:07+(,C«FRAMES),OT _
[111 =LoO, (JMAU*pOT) (FRPT<IMAD FRPT) ,(PRAD«14x/pC) ,FP+PRAD FP
C4271 Lu: 0P<~ Jecw(Cn' V) /0

[13] +(Lurxto~'='e0) (14126),pC+("14C1, ') 4C

(4] Loc«(Ci'=V)iC

[16) <+LUEx10%L0C«4/(114pPID)Y» , FIDA, =2 8§ 1 p((9~pBOP)p Yy, Loc
{161 +LhEk\0¢+/(li+pFID)X.FTDA‘= 9 1 pC«((9=pC)pt "), 04(" 1+Ct'~°)1c
[47] PFIp<«(1 O 4pFID)pC, FID

(181 or«("1,(14pkID), 0P, 14p0),0T

(191 50, (IHAD«pOR), (FRPT«IMAD ,FRPT) FP«FP{LOC] PP

(201 LaE+LO, pO-+tEQUATE ROT VALID!

[21) L3:1+(L341),(pPID«FIDICsY), (FRPP«FRPI(C), ITHAD) FP«FPl C+4FP)
(221 Pr«pr,07LFOPTLA/(114pTBLY% "BLA,= 9 1 p, PIDI1s1T4147)
231 prepp,orLFrpeti 14 PRPYL2]- PﬁPT[i]]

[24] ¢tcxo(rp+i¢FP) (FRPT«14PRPIY, (AVP4AMP FPPL1Y) ,pAM<AM, ,FID[141
{253 <+(MO0»10= 1+pr1b) (L3+1), nFJD+FID[1+\ 1+14pFini
[2¢) MO:(((DPT)%17).17)DPT
[271 (((pAMY+9),98)p AN
[28]1 ((pAMP),1)pAME
v

vroruAPL OV
V FORMID«FORMARSEV TEMPLALYVIDL{FTBL $FSPLOPYB
+Lix10=+/C1i4p TBL Y%, "8LA. = 8 1 pLOC
+P8,pERROR 2
Li:TBL4(i 0 +pTBLYpLOC, ,TBL
PrpL«lti4pTBL) -4 /{1 14pPBEYR PEEA e O 1 pLOCY,(BpbY, 7, 0,0
+(14198), (PV+TFMP+BpB40) FORMID«V+A+to
ro -¢(1+126) (pc+(! mc)/c+un+194a).90P+1o+9+c+1ﬁﬂvr
A+1++/(«1+prw PYn THSTA.=((44pTNSTY 1)p(((14pINEP)«pOP)p* *),0P
+(F1,F2,F3,Pu,F5,F68,P7,P8)[4]
F1z+ro,pgﬁr0R 1
P2s+(FP2Ax EV{11=1),P2Ex 1 TEMPL 3] =1
P2A1+P0,(pDECODE)Y, (FSP+10) TEMPL31+1
Rzzs+ﬁzﬁ.(pﬁRROR.3).EVt1]+1
F314(P3AABVL2)=1) ,POEx1 TEMPL 4121

Lonm s ot o o i 2 of oo S o e S e e &8 e of o ol 8 e 3
b e b B (O O SF QY T TN
WNPFA QLI LIl

el Ll el Lt

143

(18] A<i4Des /(1 7)x, CODESA.= 4 1 pC+«((4-pClp' *),C
{151 Foas+(F2axD: o) FO,(rEMPIu]«1) ,pF"BLL7)<(7,0,1,2,3,4,5,5)04]
L16]) F3B:+IG,pERKOR 2
{17]) F35:4F3A,(BVI2)«1),pERROR 1
(181 Fn. +(FuAr11Vf3J 1) JFUEx PRMPL 5) =1
[19] FPud:+F0, (lrl”[a]*i).pFTﬂl[B]+TRANS
120 ruke+Fud ,(EV{31<1),pERRCR 5
213 PO (PSAARV (4 =1), FSE- A TEHPI 1) =1
(227 Fsa:»FO,(pFPBLL 3« TRARS), TEHPL 1]«
[23] F“F'rFJA (E¥{4]<«1),pERROR 6
[2u] Fg ﬂ(lﬁA/1~VfoJ 1), Fers TEMP(21=1
(25] reA:-FO, (27”P[?]41)_0PTLL[M]’TRA S
[26] FeIL:+FG A,(PVLb]«l).pERROR 7
C27) F7 ¢ (FTA EVI61=21) , 0 7Ex v PFRMPI6] =1
[28) A<14De4+/(17)x,PSPSA,= 4 1 pC«((U4=-pClp? '),C
(29] F74:+(FiB=1D=0),F0,(2EHF[6]<+1),pFTBL[9]<«(0,1,2,3,4,5,6,7)[4]
[30] FYIR:>FO,pEKROR 2
(311 Fime»PIA,(EVI6]<1),pERROR 8
[32] FO:+F8Ax13:4/340EMP ‘
£33 ->(rSx10=pV),0,(pERROR 9),pTEL«TBLI1(14pTRL)-13]
[3u] FSA.+(FQX10¢0V) 0, pFORMID+FTRL,(8p0), FORMID
[35) FG:+0,pO0UTEER
v

VFRAMESL(M]V

V ITBL<«FRAMES3A3;ViD3;D13;D23P1;PIS;0T3P3;P2;CPSY ;DSY;;ISY
[1] »(L2%x10=+/(1v14pFID)Y* FIDA.= 9 1 pLOC),(A«V+10),1D+D1+0
(2 =+0UT,pERROR 10
{31 IL2:FID«((1 @©)+pFID)pLOC,,FID
(4] SYTP« 1 1 p' ¢
[5] SYTB« 1 9 pt !
[6] +L0x114(ITBL+10),10x14pSYPO+ 1 1 poO
[7) LO:»0UTx11=v/((5004pITBL)>X22),A/'END"'=3494C«TNPUT
(8] +(L7x11=A/' *=2L0C), (1 0xpLOC+94C) ,10xpLOCA+104C
[9] *L00x10=V/('CONTINUE' :849+C), ("DIMENSION'=9494C),10%xp ,P3«"'1"
[10] P3<«'0! ,
(11) LOO:+L74,LOC«LFORM P3,LOC+(LOC=' ')/LOC
[12) OUT:>(0OUT+2)x10=pV
{131 -+0,pOUTERR :
[14] ITBL+«CDAD ITBL<(((pITBL)#17),17)pITBRL
[15] =0,pMEMP
[16] L7:L0C«up0
£17) L74:C+9:C
[18) +GOTOINSx\A/'GO TO'=54C
£19] <REPINSx\A/'REPEAT'=64C
[20] -CORTX1A/'CONTINUE'=84C
[21] -+DEMxA\A/'DIMENSION'=94C
(22 C«((Cr' ')-1)4C

=

T ELURN PO OIIOWL

TG W WG WA WWNNNNN RN

—_—EEFEErTEES

DN TR HESTOITIG DL WNRPOORINDRETTWNROTOI NS

OO aarITUrar A ergr o &

v

144

SHETXAASYHALTPY =4 C
+TFINSxan/t IR Y340
+LTA LR e eD1+104C
LO0OL+SUBINSxAA/YSUBY =34C
+S5YTHEX A\ A/ SYHC Y e 40
DI RExAN/YORD Y =14 C
LA A/ (P eD1), (Y, 'eD1), (Y +1eD1), "= cD1+104C
h145:+vL0x2=pFREOR 15
L/A”'*L7A3x10 ol
Pi<I4LIDKL ' 2! Dl+((Di[14AD140\'(+-t1)-1)4C
T L«ITBL ,L0C,5,0,P1,D2«0PRA r«(pni)¢c
IUO:+(L0X\02p0).L7A32tOnV/(1+C=f-'),140='+'
+L000, (pC<14C) ITBLL (pITBL) =111« (dxCl1]= 4" Y42xCl1]=" -
LTAL:PTS«1 4 LIDEL '0¢ , (AT 1=pC+(Cart =2)4C) , ((Cri=t)-1)40C
O7T«PARSE €
L0 ,RESCD LOC,H
IPINS D1 /CrpCYC=1)1 Y4C+34C
+TFix1(9<pD1)v0epCe(0-14phi)iC
PTu+1+LJle ‘o', b1
+IFP1x1(~', eC)V(+/0 '(')&+/C~')'
OT«PARSE €
+LO,RESCD LOC, 5
IP1‘+LG pERROR 15 ;
cororﬁs:a«(1¢(02+LF0RM Yot, (D2%t V) /D2«((104C)1Y Y)4104C)), 700
+L0,ITPBL<I"BL ,L0C,1,0,(20000402031),4
L7 :+L0, ITBL+T/BL, 100
CONTr=L0, ITT8L+TTEL LOC,9,1200
DEM:+DEMIxyb<pPl+(P1=t V) /P1<«(C1Y Y)AC<104C
+L0,ITBL«T7BL,LOC,10,0,(Pi+LITPEL Y0 ,P1),10p0
DEM1 L0, p CRROR 114
REPINS D1+t =20« 14(C1t Y)4C0¢1040
wLTA3x L2 /(22p(D4%0) /D1t ,tuC) 12p(Di20) /D1
DAePARSE(\"1epC+(Ctt , Y)4C), ((C1Y,)-1) 40
D3+44LIDEL 4t (1T deple(Crt et YiC), ((C1t=t)1) 40
PLePARSE(A " 1epCe(C1 1)4C), ((Crt Y)=1)4C
A«(42pP1)xP1,0,0
Pi+34pi1fi], (lpitaJ),Pitﬁj Pi+(34(1=pP1)x10000,P1 1)+344
d+(1¢ pOT)*iOUOO(OT¢PARSF C) i
or«340Pt1 3, Clorts1y,02t23, 0T+(3+(izpom)xdr D,0)+844
+ho, ITﬁLvlTBL Loc,2,0,02,P1,01,07,3p0
WDINS:*ICFH (P3+9) (b2+u) P40
SYINS:+ICNN.(P3«B)‘(D?+u)_P2+0
SUBINS$+ICMN,(P3+7),(D2+3),P2+0
ICMNi+100,TTBL+ITBL,LOC,P3,0,P2,Di+«0PRA C+D24C

I OCETWN

w

o BunRan e Nasn Nanl o Ko Fon Ken Nan Nay

L

<ty e e
WD LU L N
[QU S ¥ S b 20 OF SENS 25 SO b NENV ¥ NV B Y S O |

{111

[13]
f1u]
[15]
(161
[17]
(18]
{19]
[20]
(21]
(221
(23]
[24]
[25]
{26]
[27]
(28]

=
N ¢
(-

v

VIRPUTLIY
V<IRBPUT K/
B80p'123456789n"
V+T)
+ix1V[1]=t !
V<V, (80-pV)p" !
+Ox VL B0 = x?
Ve 147
E0p'123LU56789 %!
Wi/«

ST AL 1]=" %"
V<V, 17
+6x 1!

wVaT 14K
Vev,t !

VvepADPL OV

B<CDAD A:I:K3D

+L1,p(pPAD+ 1 1 p0),(pDAD« 1 1 pDMAD) ,(I<1),pPSY«DPSY+ 1 9 pt !
L1:+L0x10= oK*(A.O)/F$(11+pA)X(1O= AL:51)

D«(D=0) /D<Al K11

A<(((14pA)- 1/.(1va))p(,A[1Lr1] 13]).,A[K[11.\(1+pA) -K[173; 1
DSY«(1 0 +pDSY)p(,8YTBL(14pSYTR)~ D[i] 1),,ns8Y

DAD«(1 0 +opDAD)p(D4AD[1;];n[°]-1oooo),,nAn

+11 .SIPO[(1+0 YPo)-DL1]33«"1
LO:=+[2x10=pX +(”:0)/kv(11+rA)X(9=,A[;5])

PSY+(41 0 +pPSY)p{ . SYTR[(14p8YTR)-(14,AT14K;1):)),,PSY

" PAD«(1 O +pPAD)p(PRAD+14K), ,PAD

-9

SYPOL(14pSYPO)-14,A014K3])31]«" 2

A«(14pA)-14K

+L0,,A+(((14p4)-1),(14pA))p(,A[1(14K)-13]),,AF(1+K)+1A]
L2:75Y«SYTBL(D=0)/D«(114pSYP0)x,0<5¥P0 ;]
L3:D«A[T;],0<2

+Lux10=D[1]

A«(14pSYTB)-D[1]

A[T341<50000+DAD[1+(+/(114pDSY)x,DSYA.= 9 1 p,8YTB[A;:1);]
L4:>(L5%120=LD[K]+1000),1+126

+(Lux1182K«K+1)

*(LSX1(1+1+pA):I«I+1) 0,pB+A

LS:»(Lox1"2=P78),L7x1 PmS+SYPO[(1+pSYPO) D{K1-200003]
A+«(14pSYTB)- D[F] ooooo
+(Lu4+1),ALT3K]«20000+4+/(114pISY)x,IS¥A.= 9 1 p,SYTR[4;]
L6:4+(14p5YTB)-D[K]1-20000

+(Lu+1) ,ALT;K]«40000+PADL+/(114pPSY)x,PS¥A.= 9 1 p,SYTBILAs1];]
LT:A+«(14pSYTB)-DP[KX]1-20000
+(L4+1),ALT3K)+500004DADL1+4+/(114pDSY)x ,DSYA.= 9 1 p,SYTBI[A;];]

140

vORECODEENIV
v Y<DECODE B D

f11] Y413
21 Loes(prasav/efil=t(p'),(ocr<iclfil='0'), 0ﬂ71x10f11c 012345617
31 EkrR:»0,(pERROR 2), 1anL7 5 6]+« 0 0 0
ful OCP:+FRR%10= pr«14v
[s1 ocrt:>ERR A ~C[1]lct0i23n567" :
61 +(LOx10=pC+1¥C) L1, pFSP«FSP, 0 1[14 2 2 2 v('0i1234567%1c011)-1]
(7] BIN:+ERRxA~AJ(B+(T14Dpl14hD-(C+14CI)0 1)4C) e 01!
(el +(LOx10=pCeDICY L1 pPSP<FSP, R=V1Y
(9] L1:FPSP+((32-FTBLL21+pFSP)p0),FSP
(103 F9BILL61++/Bx10«(pB)-1pB<«(6p8)r2L164PSP
(411 B<(6pB)T2L164FSP
[12] < (ERR»132<FTBLL21),0,FTBLLS)«+/Bx10+(pB)=1pB

v

vERRORL[1IV

V Z«ERROR XY

(1] +(E1,F2,3,F4 ,E5,K6,E7,Fe,F9,F10,F11, k12, Fi3, i B, Fi6, E47)EX]
{21 Eis+Lbo,pY<0P,' IS NOT A LERAL OP CODE?
{31 E2:+80,pY'TLLEGAL ARGUFRMENRT POR Y ,0P
(4] E3:++E0,pY+'VARNTNG MORE TRAN 1 PSP INsT!
[6] Eut-aE0,pY«*WARIING MORE THAF 1 CODE tismt
(61 ES:+E0,pY+«'WARNING MORE THAN 1 BIT RATE INST!
{71 EB:+E0,Y<'WARNING MORE THAN 1 BITS/MHORD ThSTH
[8]1 FE7:+E0, Y+ 'WARNING MORE THAN 1 WORDS/FRAM INSMY
rg] E8:+EO.I+'WARNING MORE TRHAN 1 TP SPEFD INSTY
[10] Eg:»ﬁo.y«'FORnAT Y PBLEL13),Y IS NOT PROPERILY DEPINED?Y
{44 F10:+E0,pY+Lr0C,"' IS5 MULTIPLY DRFIPED!
{127 BE113+B0, Y+ 'THDEX ERROR IN LOCATION ',LOCA,Y ILLNGAL NOMARR!
[13) E12:+E50,Y«'INDEX ERROR IW LOCATION ',LoCA,! NUMBFR s> 949t
143 E13:4+°N0T YET DEFINED! ‘
{151 <EO,pY«'THDEX ERROK 1M LOCATION '.LocA.' TNDEX Y, V3,4
[16] Eih:i1+E0, Y«'DFFINITION ERROR IN Y ,LOCA,' PARFNS DONT MAYCH?
f471 E152+E0.0Y+LOCA EXPRESSION IS ILLFCAL'
{181 Ei16:+E0, Y+10
[i9] E17:+E0,Y<«'IN Y,L0CA, EXTRA PARENS SURROUND ‘',P3
{201 Foi-o, (V+v.pr)g(pA+A Y),p2«tio!
v

VENTH[D]V
Y D+«ENTR X:V3

41 +50x 1 02D«4+/(114pSYTBI% ,SYTBA. 2 § {1 pl¢X

[21 BSyYrP+((1 0)+pSYTPYp(14%X),,8YTP .
£33 SYTB+((1 0)+pSYTB)p(i4X),,5YTB

(el D+(14p3YTB)-1

{51 SYPo«({1 0)+pSYPO)pD, ,5YPO

6] +{ERiwy Y2 244%) (DAS1 VA vi4X) 0

(71
8]
[9]
L10]
L1411

w\JH

-~
-

Tremrreoeoe,rm ™
J'

oY

]
2
.
J
5]
]

QY N
LS IO 3 SOU J ML By SO)

-
R

[on o M une B mu IR o |

[82]

e
N =

[l SRR S W W ST) [N)

Lanet B oo M e N s W e B s T o T e e |
Lol Y Je o BEN BN o2 I BN SN &]
[

(121
[13]
[14]
(15]
[16]
£17]
(18]
f19]
£201

v

v

v

v

<

v

147

DAJ:+0,p8YTP[1;]<" 2"
LO:+ERRA v (SYTPID 1=14X)A" 1 =14 X
+0xp D+(14pSYTR)-D

ERR:+0xp(D<0) ,pERROR 10
EEL:+0xp(D«0), (pERROR 13),pV3+14X

VLFPORMIINIV

Q«LPORM XY

+411X11='('6X

FOxpQ«(ENTR(L4X), ((9-p1¢X)pt "), 14X«(X=* *)/X), 0 0 O
A11:0«ERTECY 0), ((9-p14Y)p* "), 14Ye(Yz2? V) /Te((X1 (")-1)4X
Y«PARSE((X ' (')=-1)+X

A<(12pY)2Y, 0,0
+0xp(G<0Q,34Y[13,C(1¥031),702],Y«(34(1=pY)x10000,Y,1)+344

vLIDELLD]Y

Q«LIDiL, X

+£11%10=2V/11=t 0123856780 X

+0xp ,0+20000+ 1+ LFORM X
A11:4FFExabap et d)
+0%p,0+10060+10.('0123455789%1X)-1
ER:+0,(0+10000),pERROR 12

vHENPLO]Y
Y<MEMEP ;85

Yer2

*PROGRAM

1

SS«+! Vi oprP V2 V1 OP vat

"' ADD LOC Vi oOoP V2 I L A Vi OP V2 R ',8%
(*12 345 *)§(((14pITBL),3)p114pITBL),ITBL
+L0%11=14pDSY

'*DATA SYMBOLS'®

DSy

*DATA ADDRESSES!
(((14pDSY)-1),1)pDAD[14114pDSY1]
LO:+L1x11=14pPSY

* PROGRAM SYMBOLS!

PSY

'PROGRAM ADDRESSES!
(((1tpPSY)-1),1)pPAD[" 14114pPSY;1]
L1:2+0x11=1+14pISY

‘INDEX SYMBOLS'

ISY '

*INDEX NUMBERS!

((14pISY),1)pr114pISY

WL T EORNSROORIDT T WN S OISt Sl ity

RN NONROOARNKDRN P 2 bl b e L 20 D3N TN 2

Y Y T Y ey OV T
WD U TN
e) d L Tb bk T e

148

vorrALMNlY

v 0«0PRA XiYyKA DS .

n+iop0, (K4+0), 0xpS+px

L0O0: A~ L1x11+x~'

S(L10%1v/(0= pX) CidXx=141),(24X=1-2), (LOxv24 X2t (), 4
+0xpFRIOR 15 '
+((LOO+1)Yx1T7=13) , 00, P2«LIDRL '0',Y
L10:+0,pCe(S-pX)}iC

Li: n(uruApxﬂ(+JJ)1qu4x

A«(3 1 p34((3-pY)pt '), Y, X+(pY)iX

SUL0042)%105Lw+/(17)x, (7 4 p'PEPPOTPEAPOA L F B‘)A =4
+L00, (K+K+1), nrquQru]+Lx10*u -K

Lo ’+((L00i1)xtﬂ”')'€X) Loaxalet Je(Xt))4Xx«14X
+LOAXV1=A/YALLY 234X :
OL3J+PARSEC(X1 ")Y)-1)4X _

>LO0, (X«(X1')")4X),(Q[11«10000),(Q[2]«1)
LOA:+L00, (pX+biX),Q[2]«1H '
LoeY+(1 T dupX«(X1t) 34Xy}, ((X1")1)-1)4X
S(L00+1)1 2=2p (K20) /KeY=t F

Ke(i dupy= (Y,)4y) ((X1', %)=1)4Y

L+«PARSE K
Ad«(1=pL)x44L,0,
el1 2 31+345011
K«(1 1=p¥«(¥1 ',
L+PARSE KX
K«PARSE Y
Ad+(1=%pL)x34L,0,0

QLs 6 71+34L011,C1E031),002),0«((1=pL)x3410000,L,1)+4
A«(1=2pK)x34K,0,0

+L00,Q[8 9 10]«3+K[13 CIKM3Y) kT2, k«((1= pk)x3+1oooo K 1)+44

0
’
t

C1ef3l)y,n02] L ((1 p L)% (3410000,0,1))+4
J4Y) ((Yr',')-1)4

YOUTERR[D]Y
Y Y«OUTERRyIsJ

I+pV
L1:J«V[1]

ViV

J4A

A+« 44

ZL1x10¢I+I-1

Y«tio0?

VPARSE[[]V
V Y«PARSE YSiSTK{STXVILICLHTISVIVINX
#0%10=p(¥+10), (goT¢+Tn,')') (SMHLT 8) , STH V<N TEVD
d+(Nxt4ters)+(Nx'('-r¢)+(w+xors)x’)'“Tn
W QW) /He(Nxt V2T8 4 Mx 41 2F8)+(Mxtat=T8)+(Nx ateard)4l

149

L00:+0x1" 1=p(,pTS«(pM)4T8) , (NeliN=-nl) ,pH<(14N)4 TR

—q.—,-—."—

0]

5] +LOx\1=pl

R w0 1= (LYC=8)V],T=7
71 X<LIDEL Y2%Y, 14N

er +L5x13=2p(HT8V«7) (LTC«5) o« 14/
[9) FERO:+0xpERROR 15
(10 Los(Laxal=t V), (L2 \Het+-%2'), L3Ax =" ("
[11) »ER1x\1=Vv/LIC= 1 2 3 &
(121 »5L5%x12=zp(HTS5V<d), (LTC<«7) ,+10
(131 ER1:+0xpEPXOR 15
(14l n2:+L2Ax11=v/LIC= 1 6
[15] osER2x11=v/LIC= 2 3 4
(161 Xe-td/(1u)x]’=t 4%t
[17] L5x12=p(HTISVeS5), (LTC«l) F+ N
(18] Lo2A:+FRAx1~Het +="!
[19] +L5x13=p(X<10000),(HISV+7),LTC«S
20l ER2:+OxpERHOR 15
[21) L3:+FR3x11=v/LTC= § 7
[22] +L5Y13 p(X<eB) , (NISV«8) , (LT(+6) ,H«10
{231 ER3: +0xp ERROR 15 ,
C24] Li:+0x1 1=p(pTS«(pM)4T8), (F=14N-p!1),pl"«(14M) 478
[251 X< 1xb+4/(19)x,(9 2 p'rnﬂvLFﬂvr”r"nvANHn')A =(2 1)p24V
rz26 V*(1X11>|‘)+(°XV/ 11 12 =]X¥)+3x13=]%
{271 oRERux11=((v/FP= 1 2)AV/LTC= 1 2 3 4 6)V(M=3)AV/LT0= 1 4 &
[28]) L3x12=2p(R<10), (HTSVe+/(1xI’= 1 2),3x"=3),LTO«D
297 FRUu:+0xpERIOR 1u
(301 L3:+>(LSAXVRTSV>1487EY), LSRx\HToV<ci4amKY
[31) +(LOx11=pF),(L00x102pTS),0x10=2p(SMX«145TV) , STPV+14STVV
{321 =0xpERRCR 1b
[33) LSA:A«{(STKV+((O0%FISV=10)+HTSV<10)xITSYV<«ATSV+1),57kV)) ,LAS-1
[3n] (LOx11=pl),(LNOXx102pT8),(0x10=p(STV+X, 5TX) A
{351 LSB:»LS, (STRV+1+STHEV) ,(STK«1+5™R),Y«Y 1457
v s

VRESCDLO IV
Y DD«RESCD OPCD3P1;L;V1;0P;V2;R;:T

(11 P1+(0%P1)/P1«(1p0OT)x0T<0
[21] +(L1%x10=pP1),[0,DD«14T+«1100
[3) ILc:=L2x113=}07TpP1(1]]
(4] A«(I«14I),R«30000+14T
[s] +0x10=p(V1«0T[P1l1]-21), (V2+0™ P1[11-11),(0P«|n7rP1T11]), A
(6] +0x1 1=2p(P1+«14P1-2),0T«((P1[1]1-3)40™),R, P1[1]+0m

150

(71 L3 ITBL+I”HL.0PF“ 1.,P?5,V1,0P,V2,R,6pD
ral 4(9+t“n)vqn~vxnn«ao L (PLeinnny, #1000
91 Fe((P120)/Viephe (Vi1 -300D0), V7<Vz 30000, T
Fial shosbep bt
P14 a0xp , rPnLECo P01)-111+0
FA9Y b2+0x10=p(Vi«0) (V2¢0TIPLI1]-10),(0P+13) ,(T<14T), ﬁ¢qnnnn+1+r
431 03, (ri+idpPi-i), 0t (Pif1]- 2)+0m) n, P1r11+0m
N Ii'IThL+?mBI 0PCh, b, Pm3,0,0,0,0M™ 6p0
v
VrkANSITIY

© x«TRANGS N
13 A+PECx i CLCEL 2D YIvel 1 e MIA~v 11 (N1 01234506789) 1140
[21 A+Ad,0CTx Lol 110t Ya~v/a=(84M)114C
[3] *(RTN*\(Ffij"B')A~V/3"'01't14C) A
ful +0,(x40),pERROR 2
[6] nrlx+n Yeiol(ice(cti1=pr)i0) -1
tel UUT§+O,X+HLC(B+ﬁ)ic+i$0)~i
A vBIN:»o.X¢?1('01'\C¢1¢c)-1

APPENDIX D

This appendix describes the APL routines written to simulate the telemetry

preprocessing language and presents listings of those routines.

| The r;oﬁtineﬁBUS directs and controls all data flow operations and control
sequences within the simulation system. Control sequences can take up to eight
ID commands in succession. This allows a total of 128 modules to be connected
to the bus .at one time. The BUS routine computes the record numbers of the
module storage file on the disc system.

Prior to executing any functional sequences, the locations CONST, CNSQ,
JQP, and CUMDND must be Initiélized to zero. CONST is the bus system con-
nect indicator. CNSQ is the connect seqﬁence control flag. JQP is a job queue
pointer. CUMDND is the current working module number.

The entry to the connect sequence is controlled by the first branch instruc-
tion of the routine. Label L1 is the code to execute the initial connect sequence.
It is entered if 1) a send ID command is issued by a module in control and
2) either the bus system is not connected and the connect sequence is just start-
ing (CNSQ = 0) or a new connect sequence is being initiated by a connected module
(CNSQ = 1).

Label L1A is the follow-on connect sequence and is entered if 1) a send ID
command is issued by é module ip control'a.nd 2) the module is already connected.
This can arise because of successive send ID commands in a connect sequence.

The sequence labeled 1.2 is entered if 1) a transfer of data is requested,

2) the module is in control, and 3) the module is connected. This sequence is
exited if no modules are connected. This would be the case when the send ID

command is being used to clear the connects to the bus system.

151

162

Otherwise; a control vector of connected module numbers is set up, the
modules are redd in one at 4 time, and the data ig transferred. Then, the up~-
dated thodules dre written onto the dise, the original module iy restored, and the
sequence 18 exited.

The sequence to drop 4 connect i8 1abeled L3 and is enteted if 1) it is re-
quested and 2) the module {8 connected. This sequénce simply drops the connect
and exits, | -

The sequence to transfer a selector is labeled L5 and is eftered if 1) it is
tequested, 2) the module 18 connected, and 8) the reqiesting imodule has cotitrol,
'The segquence checks to ihgure that only ohe module 18 coniected. If there are
more than one, it exits, The sequetice then saves the clirrent module parameters;
reads the new module parameters, executes the instruction, retrieves the Selec-
tor, restores the current module; updates the selector, and exits,

The control transferal sequence is labeled L4 and 18 entered if 1) it 18 re-
quested and 2) the requesting module is connected, 'This Seqtience will create 4
job tueue if v multiple control transfer 18 encountered. The form of this queue
lg 8 matrix whose tumber of rows equals the number of modules cotinecteds ‘The
tolumns dre conipoged of the current state of the system, i.e., the destination
todule of thy tratisfer, the task to be performed, the request originator, the bus
eotitiect stdatus, the connect sequetioe status, and the request type. This mattix
then becomes 4 task table of jobs to be done. As long ns there are entiies in thig
table, every reguiest using the bus system is stacked and the job entry of this
- table is the task performed, In this manher, the sequencé of events s kept cur-
rent.

Sequetice L4 wlil drop the cohnect to the bus system and exit if no modules
are connected. If a sitgle module {8 connected, the cutrrent module status will

be stored if it I8 in the stop state. Otherwise, execition will continue until the

153
stop state occurs and then it will be stored. The new module will then be read
in and control will be transferred to it. |

The routine CON emulates the control portion of a module. It initiates
functional cycles, keeps track of the address of the current microinstruction,
directs the reading of microinstructions, and controls the external communica-
tions to the module. |

The routine FMSH emulates the search portion 'of a functional cycle.

The routine FMRD emulates the read portion of a functional cycle.

The routine INPUT is used to load the functional memory modules. It ac-
cepts octal data as input, converts it to binary, and stores it in the appropriate
word of the memory array. |

The routine INST decodes and emulates the operations of the forty-three
microinstructions of the functional memory module.

The routine LIST is used to provide a formatted output of the contents from
the functional memory module's memory array and from various registers.

The routine MCON is the initial entry point to the simulator. It initializes
the various parameters of the simulator and receiver as input, the initial point
of control, and the type of cycle to be run at the start of the simulation. It also’
prints out the results at the end of the simulation.

The foutine PICK takes the top entry from the job queue matrix task table
and initializes that task.

The routine PLACE adds té.sks to the job queue.

The routine READ retrieves an image of a module from the disc system.

The rbutine WRITE places an image of a module on the disc system.

The routines that have just becen described comprise the APL simulator of
the telemetry preprocessing system. The APL program listings for these rou-

tines follow.

—
-

FEFEEEFST T IO WWM MW WWNNANRNRKNNNRIR N - b b bbb b b i 2 (G 0D =3 CT NS G NS -
FETWONF T T NIRRT PRRTOTIIONLESTWGNR,R TOOID U

<3

164

vRUSCIAV

BUS EXT4X04X1

B<RCOM
+(L5xA(EXT=5)ACCORT L YACORETERE 1) =1) Jolx Ky Pap
+(L3xt (EXP=3)ACONCTLRI1T])=1) , J04x 1 (d=dOP)ARX =Y ,
LOs+Lix A (EXT=22)ACONT=4)ALLCONCTIRCOMIL1T=0)ACHEN=0)VENEN=1
+L1Ax 1 (EXP=2)YnC00d =1 YACCHSO=0)acOoNe T RCOME 1])21
L2 (EXT=4YACCORT=1 YACORCTLRCOME L 1] et

+Lux 1 (EXP=u)AaconcTinCOMI111=1

+0 ,STOP+~v/(2iP[21+i61)= 35 39

TAsMDRE«(MDRI=0) JHDEN«{116) %1641 ¢ RCOM
MDEN+(416%24.34174BCOMYIMDRY

+0, (CNSQ+BCOML 211) ,concrEBlill«d
LIAMDRN<MDEN , (16x2134174BCOM)+(X020)/X0«(i16)x16414RCOM
+0,CNSQ+BCONM 21]
L2t+0x102p X1« ,MDRN

WRITE b _
L241rEAD x1[1]

conN

concrtBCoME 1))«

hprve xif1)

+L2A%10ep X1414X1

READ 0

+0
L3t+0,(CN8Q«1) ,copcrrpt 1«0
L5y30x{1ep ,MDRN

KWRITE O

READ MDRN

conN

conNcrLRCOMEY 144

READ ©

+0, Pelel $BOOM

Lurstaistiep MPRIIV(CONT =4)vETOPED

1 0xp(CNEQ+L) COMCPLBEL <0

+(JSEBRASGPE1), 01 D=p , MDEN

LUBAWRETE CUHDNO

READ MbRH

P«ieidncoM

BLY4Je1u0

INgy

SsLAuling L epyy

MDRN, 34ABD

DARA

+0, CUMDNOMDRN
JQI:*JQA“iJQPﬂi

MDRN
SOR{ 0B MDEN ‘
A*HddMaGUMnNO EoNCR, GNSQ.FXQ

[u7) apQ«<(((pMPENY 1)pMDRR), C(pMDRI) ,36)pd
[na) +0,JQP<+1

[i ()] 17(.'/1 tPLACE

[50) QonsWRTTE CUMDRO

[511 PICK

(521 READ CUMDNO
153 a(LusxxEx7T=u4),L0
[sud Lus:»10x14(CUs0«1),concrinf111«0
[S5) WRITE CUMDEQ
{561 nEAD MDRN
[57) HMPEN,2164154BC0OH
[58] DATA
[59] -0,CUEDNO<I!DR
[607) FAub :+(LAuS» V=1),(LA46x1V=2) ,(LAWTx1V=3) ,PUN+1=0
(61 LAnS:0,SEL<FHSE IV
(62]) LALG:FHMED SEIL
[63] =0
[64) LAGYT:FMRD SEL<«FMSH WV
v

veortmniv
VY COREXTV

[1] F7.P«1 14BCO!M

[2] +LPx 1 LPG=1

(3] P[21]«0=1

[u] Inse

[5] S (PCx A PUN=1) ,(CRPx11=21LR™),(CI7M"x12=21RP™) FOP
[6) LpP:M{1+20ADD[4]331+21ADD[5 61]1+P

£71 0, ADD+14(702)T1+21ADD

(8] cCR D.UAMA+W{1 -2 1LADDC AT 3120314+20ADPP05 611
(9] +0,{(SP0P«1=1),87«1=2 0 0

[(10] cvr: f[1+21ADD[1u1,1?0 1+21ADNLS 61]«1=NATA
(11] =+0,(ST0P«+1=1) ,RT«1= 0 0

{12] FC: P”L+1 0

[13] > (EOPx1V=0),(FCix1V=1),(FC2x1V=2), FC3X13"V+2LCm
[14] FC1:+>EOP,SRL+FMSH WV

(15) PC2:FMRD SEL

[18] =FOP

(17) FC2:FMRD SEL<FMSH WV

{18] EOP:+EOP1x\0=EXT _ ,
[19) +F0P2x1(1=STOP)YACOPCT{PCOM[1]]=1
[20]) +EOPOx11=STOPA~FUN

[21] -(FCx\FUN=1)

{22] P«M[1+21ADD0Y4];531+21ANDPLS 61]
[23) ADD«1=1+4(7p2)T1+21ADD

[24] CYRDCT«CYRDCT+1

[25] INST

[26] +EOP

[271
{20]
291
[30]
311
[32]
[33]

v

£y By =

2O oD e,

]
v

[21
[3]
[u]
[5)
[6]
£73
[8]
fa]
[10]
f113
tia]
[13]
f1u1
f153
f16]
£171
tig1
f191
f20]
{211
t221
[23]
[2u1

FOPo:+0,CONT4+1=0
ROPIIBUS EXT
BET«BSTARXTw?
BCN+DRURYEX =2
+EOP, BX 40
ror2sRUS 3
0P

vrMRDINIV

FHRD SELYRMD

RM«<%0p0=1

AL2»30=p 3D

RE«v /L4 HESEL 12041
+>Li420R7

L1:+5L2 ,RM+20p0=1

+1,0 BMeRM 137

252, BMeRIL $ 1]

+L2 RHe(1=T)v3=T«,+/[2]1 RN
Lo« DATA«(DATA<NDATAAMNIASKE YNEMA~MAS Y
PCYCT+PCYCT+1

vrusninlv

SEL4AFMSH WViThyPLIsC2:iC3CuC6 4T3 J30{AEO
< 16 U4 p0D=1

SEL+16p0ad

Cae1420 2 3 4 §MIPVI205 1 2]

A<MV 203uTACp Y)Y, 20)pHASK A~DA A
Ch«(HIPV§120837A((pWV),20)pMASKADATA)VA
T+g41
L0t PLITMVEL) s 303N T 3 11+CUI T 44]
+L1i0x1245d+J+1

g1

+L10x (14pWVy>TeT+1

TL«v/{2) TLI

PLLWY Y Je~rLlW Y]

C2+CU+CB+0 .

T<1
LOtO«V/ LIV I]

A«a/BnERvLrl;

Fo+v /(1 3)=4/7nEwyirlsd

+Li+24MIRYET Y321 1 2)
Lii+52

+52, (0+0VE3), (LA«AACD) JEOLV /124 /RO, 0D
52, (0+0vE2VvCH) , (A+AACIACH) ED<«V /(1 3)=2+/F0,02,CH

452, (0+0VCAVCUVED) , CAANCIACHACE), FOeV/ (1 8)=4/F0,02,04,C8

Lz~»bq+?Lutuvrr1z21g 5 41

[25) L3:+Ln

(26 Ly, 8rLlVVET)1eR0

[27) Luw,SELRV[T]]=0

[on) wrn , SELLRVITY <A

[29]) Ihif«65+4/Co ,Cu 06, PRIV]

(301 Coel{224/C2,Cl, 06, 7LIMVITY 1), (hs4/02,008, 06, "LIPVITT41),4
[31] Cuo«Col1)

[32] cu<cob2]

[33] C6<2+06

[34] +Lox 1 (14(pWV))>T<7+1

[35) SFLe04+(~n/8FL=0)Yx{(5FL=0)/SP0»116

vrupueLOY

v oTRRPUT AV
ral P<(14p0),((6p2)TA),0,1= 0 1 1 1 1 1
r=J ISy
[3] X T<1
(4] ER1:FERx 1 ~A/(94V<[1)e' 01234567
(s} BECOM«5, ,8(3p2)T('01234567"104V)~-1
(6] con :
[7] R 1x10zp V<94V
[ATID«1 =ADD ,
(9] Ml M
[10] SEXT«LPG<0
[11] FEK:*PTRS™ o CHARS., NOT 0 PN 7,7°¥ AGATN ... !
121 ~IER1

v
vrrs?riaw

v rasT
f11] "X T+0
[2) Ci+(16pL0),LID1 ,LID2, LID3,LTN4 LTINS [LON1,LON2 ,LODA , LOTIY
[3]1 CM«CM,LODS,LDA LDAT , LMSK LIN LT ,LMPG ,SA,80M DY DT STM
[4) CMeCM,5TH,SSEL,SCY,5DCD,SCL,LLAD,TC,RB1,GR2 ,GR3 ,GRY MC
(51 CM«CM,IDC,0DC MSKC ,IMKC ,JHC,ADC ,DC
(6] CM<~ 4 16 pCM,LM,LSEL,TMID,5pL0
(7] +CH[1+21P[22 23]1;1+21P 24 25 26 271]
(8] LO:»0,(STOP+1=1),CONT+1=0
(9 LID1:»IDL,V« 1 2 3 4

{10] LID2:»TDL,V« 5 6 7 8

[11] LID3:>IDL,V« 9 10 11 12

{12) LIDU:+IDL,V« 13 14 15 186

[13] LIDS:=>IDL,V+ 17 18 19 20

Ci1u) IDL:>0UT,,IDCDL ;V]«1= 4 5 pP[120]
[15) LODP1:+0PL,V«+ 1 2 3. 4

(16] LOD2:+0ODL,V+ 5 6 7 8

{171 Lop3:+0ONL,V«+ 9 10 11 12

157

WWQ@WWWWwLWwWNNNRNNNRNNN S -
NI T WNFPOUBINIOITOTWUONR DO

—
o
[So]
Tl

(40]
[u1]
fu2]
[43]
Lo
fus5]
[u6]
[47]
[ug]
[u9]
[50]
Fsid
[52]
[53)
Csu)
[55)
[561]
(571
(581
£59]
(60]
[61]
[62]

Lony:+0DL, V« 13 {14 15 16
LODS 0D, V< 47 18 19 20
onLe-»0U7, ,0penf s Vletsly 4 5 pPli20]
LDAs+OUT ADD<PLAN+1B]
LDATs=0UT DATA«PI {20]
LHsi ot MAGE-PL 121
Lritisour, INA TK<Pf120])
LI: rOUT.VV«(VV¢0)/NV+(116)x~P[116]
LEPG :»OUTx 1 CONT=1
LPG+1
0, AND«Pl1b416]
INC:»0UT, ,JDCD« 5 20 pOed
anc:+oUT, ,0bChe 5 20 po=i
HopC ol HAS «920p 0 =1
Ilez*OU”.I[15K«+20p0=1
riessoum, s 46
ADC 10U ADD<bp =1
DCYs0UT ,DATA«50p0%1
MOAVME 3y <021
onecp«Incp+ 5 20 po=1
MABK«DATA«THASK«<20p0=1
V118
ADD+6p0=1
g7
LM iADDeP[41U+ 8]
+0UT MLL420ADPE 8510203442 404ADD0 S s1j<nAmA
Le fL:+OU“,S‘L+0*(~&/SfL-0)x(SPL¢O)/¢FL+(tlﬁ)XPr1151
THIDCUT, (EXT«2) ROON«5, P
GB1++0U0P (BEXT+2) ,PCOM«t P
GR2OUT (EXT<2) ,ECOM+2 P
GB3:+0UT,(EXT<«2) ,RCOM<«3,P
GBY :»0UT, (EXT+2), Rr0M+u p
SA'+L’7AX16'O’\71“0
+0Un , (EXT+1) ,BCON«5,P
SDM:+LMSE*\COLT=0
+QUT, (EXT+1) ,BCOM«S5 , P
DXt+DX+142x1 CONT=0
BCOM«5,(0xDATA) ,P[204+17]
+0UT,(FXT+1) RCOH[1+(V#O)/V]+(O¢V+(V$20)XV+2L0DCH)/DA”A
A<«PL (V= c)xt?0)+V+(Vs20)4V+211th]
+QUT ,DATA+{DATA«DATAA~TMASKIVIMASKA(V20) A4
DI +DI+1+2Xi00NT 0
EXT+1+0x14BCOM«5, (DxDATAY P[204+17]
BCOF[1+(V*O)/V]+(0¢V+(Vs?o)xV+?LODCD)/PAmA
+(DX+3),P+1=14BCOM

158

[63]
fen]
651
[66)
[67]
[&8)
[€9]
{f70]
{713
{721
(73]
[7u]
[75]
[761]
(771
[781
{79]
[e0]
[81]
[g2]
[es)
Lau)]
[85]
[66] ¢
{871
[68]
{89}
{90]
fg1]
[a2]
{93)
[on]
[as5]
[c6]
fa7]
[a8]
LR
[100]
{101]
(102]
f103]
[104]
[105]
f106]
[107]

STM:»LIMx1CON'=0
»OUR, (EXT<1) ,BCOH«5, P
STH L TxACONT=0
00T, (EXT+1) ,BCOM+5,P
SSEL A SSEL+1 4151 CONT =1
O (BCOM<S , ((16-pSEL)PD)
BOOM«4,(16p0=1),P[164111]
BUus %
SEL+(SEL»20)Y/SRL+P{116])x116
SO (PUN<1=1),CM«1= 1 0
SCY +5CT+44+2x 100N "=0
1 0up(F¥T41) ,BCOMS5 P
40UIX\PF20l 0
P18 19]
CT+P[16 17)

159

WSEL,P[16+111]),5T0P+0=0

+OUT (FUR«~0=2LCT) , ST0P+1=14(0x1(STOP=1)A0=2i1CT),STNP

SPCI 1 =+SDCP+14+2% 1 CONT=0
*\OXO(FXT<1),FCOH+5 P
00U Tx1P[19])=0

YV (V£20)/ V<
+S1x1P[20]=1

1 2 3 +3x(2tP[16 17 18])-1

00T, ,IDCDL 3 ¥1«1=(5,(pV))pPl15%p V]
S1: ~OU*..0DCI[-V1«1 (s_(pV))thxsxpV1

SCL:+SCL+1+2x1C0N7=0
+x0xp(EY1v1) BCOM«S , P
+0UT= 1 P[2]=0
+Cx1PL1]=1

WV<(FV20) /Wi« ((0=P[6])xV),(PI6]=1)x116

ODCD<1=0nCD=x~Pl 3]
IDCN«i=InCD=~pPL 2]
TMASK«1=TMASKx~P[5]
MASY «1 =MASKx~P[4]
DATA<1=DATAx~P[8]
+QUT ,ADD«1=ANDx~P[7]
TC:>TC+1+4x\CONT=0
+10xp (EXT+4),BCOM«5,P
conr«epliu]
~0UTx1P[5]=0

+771

+10x14(CONT+1= 1) STOP+1=0

ADD«(P[1u+15]A~Pr13])vﬁnnAPr131

7C1:0T<P[1 2]
PUN«~0=21CT
“0UT ,RT+«P[(3 4]

LAD: 4+DATAr1u+16]

[108] +0UT,ADD+1=((DATAL16+14],0,0)xP[20])= 1)V(P[201 0)x4

160

[109]10UTtSTOP«+5TOPVPl 21]
[1401 +0x126>((x24)-CPU) 160
(1111 cru«lY
[112] crv+xza1

v

vHconNt 11y

V MCORXsY
CONCT+S5pCNSQ«JQP«CUMDNO+FCYCT+CYRDCT+BS T+«BCN<0
CPU«x1?24
fl«*HODULE LEVEL NUMDER OF INITIAL CONTROJ?
Y<«(3p2)t
M«'SYXTEER BIT MODULE CODE?
X«-t1vef)
READ CUMDHO+(16%x21Y)4+(X20)/X+-(116)%16pX
[M«*ADDRESS OF STARMTY
Y«(6p2)h

AR AN DI AT 0l B bk bl ol febe ol Bk Bl (J CF w3 CY LT S G N BN

i
]
]
]
]
3]
]
]
01 MtcycrLe nypet
11 X«(2 2)10
21 [«‘rREAD TYPE!
31 yeXx, 2 2 0 |
ivl BCom-5,1=X,(10p0),¥,0,1,0,1,0,1,1
81 Lotcon
61 (L2x18T0P=0),(Lix1JOP=1)
7] YRUMBER 0P PUNCTIONAL CYCLES tyroyYOT
BY ‘NUMBER OF READ CYCLES tsCYRPCT
91 YRUMRER OF BUS TRANSFERS tipgm
b1 ‘YNUMBER OF BUS CONRECTS YSRCN
11 40
3y Li:BUS ©
3] 4IL2
v
vrrextile
v prcx ,
(1] A«(uDRN«IBQL1413),(BCOM«IBQLL1+1281),CUMDNO+TBOL 13301
{2] +tuxp(CONCT«JBQt1:30+153).CNSQ+JBQ[1;36]).EXT+J30[1337]¢4*10
£43 wLix11=14pd80
4] oBo«sBati4114pIR04]
tsj +{
L] Lit+sQP«d
¥
YPLACEL D1V
V PLACE X0
11 A+BCOM¢OUMDNO.CONGT.CNSQ.EXT
Egg XO*(((D;MDRN)gi)pMnRN)o((b.MDRN),ﬁﬁ)pA

; JBQ+(C{14pJBQ)+14pX0) , 1 4pSROYp(THA), , XO

f1]
[21
(3]
ful
(5]
(6]
£7]
(8]
[9]
{10]

(1]
[2]
[3]
{(ul
(51
(6]
(7]
(8]
[o]
[10]

161

YREADITIY

READ XY

o7 & 93+65536,(0 1)+, 20 20 TX

¥Y1=22051p0

o 77] SrOP«y[4133%
1 Oxp (CONT+Y[727) , (DATA«FT724120]) , (TMASE+Y(92+41201),570P+ Y[
+\0xp(HV+Y[G+116]),(3Eﬁ+3f22+116]),(Anh+YF38+\§]),P«quu+t271
41000 (Y+1338LY) (LPG<Y[10), (FUP«YT27),(CT<Yl3 W)Y ,RP«YF5 6]
0% p (WV=(RV20) /PVaRV%115) SEL«(SEL=0) /SEL<8FLx116

+10xp (Y+1004Y), . 0DCN« 5 20 plon+y

410%xp (Y<1004Y), , TN~ 5 20 pl100+Y

0, (FYern), M« 16 27 4 pY

VHRIZET[I]V

FRITE X;¥3Inm

JRH«Y+16p0=1
+(2+1x26)x11=p 0,V

TEHIH Y)1 =21

ADD«1=4ADD

+(2+2%6)x11=p,0,5FL

YISEL)+1
A<IIASE,STOP, (,0PCD)Y, (,TPCDY, M
Y«i=LPG,FUN.CT,R?,IHH,Y.ADD,P,COHT,DATA.INASK,A
al7 3 91«1,(0 1)+, 20 20 X
axy

1.

2.

5.

8.

7.

9

10.

11,

12,

13.

14,

150

REFERENCESB

W. B. Davenport and W. L. Root, "Ranhdom Bignals and Noise, '
(New Yorks McGraw-Hill, 1958)

Harry L. Stiltz, "Acrospace Telemetry," (Englewood Cliffs, New Jersey:
Prentice-Hall, 1961)

Telemetry Working Group and Inter-Range Instrumentation Group, Rénge
Commanders Council, "Telemetry Standards,' (IRIG Document 106-71,
1971)

The Telemetry Working Group and Inter-Range Instrumentation Group,
"IRIG Standard Lanhguage for Describing Telemetry Data: Vehicle
Independent Data Base, " (IRIG Document XXX~-69, May 6, 1969)

Ronald D. Cardwell, "Comet Design File, ' (NASA Doctment X-565-87-179,
April 1987)

S. W. Hinkal, "TOPS Internal Refetence Specification, " (NASA/GSFC:
Data Processing Branch, Information Processing Division, 1969)

M. V. Wilkes, "The Growth of Interest in Microprogramming — A litera-
ture Burvey," (Computing Surveys, Vol. 1, pp. 139—148; Sept. 1969)

Peter L, Gardner, "Functional Memory and Its Microprogramming
Implications,!" (IEEE Trans. on Computers, Vol. C-20, pp. 764-775,
July 1971)

L. J. Koczeld, "The Distributed Processor Organization, ! (New York:
Academic Press, '"Advances in Computers, ' 1968)

A. D, Falkoff and K. E. Iverson, "APL/360: Users Manual, ' (Ithica,
New York: 1BM, 1968)

Sandra Pakin, "AP1/360 Reference Mantal, " (Chicago: Scletice Resedrch
Assoclates; Inc.; 1970)

John A. N, Lee, "The Anatomy of a Compiler," (New York: Reinhold
Book Corporatlon, 1967) Chapter 2, pp. 913—38

*Aerospace Data Bystems Btandards," (NASA/GSFC: Data Systems Re-
quirements Committes; NASA Document X-560~83-2, pp. I=1.1 to
I-3 93 Janﬁ 279 1966)

Frahces V. Shepherd, at, ul., '"Data Processing Plun for OAO-A4, "
(NASA Document X-868-88-427, November 1088)

F. R. A, Hopgood, "Compiling Techniques, "' (New York: MacDoiiaid/
Elgeviet Computer Monogtraphs, 1069)

16.

17.

18,

19.

163

Peter Wegner, "Prograndming Languages, Information Structures, and
Machine Organization, "' (New York: McGraw-Hill Book Company,
1968)

William M. McKeeman, et. al., "A Compiler Generator, " (Englewood
Cliffs, Ncw Jersey: Prentice-Hall, 1970)

Samir S. Husson, '"Microprogramming: Principles and Practices, "
(Eaglewood, New Jerscy: Prentice-Hall Inc., 1970)

Motorola Inc., "MECL Integrated Circuits Data Book, ' November 1972.

